A. Marie

Medical Laboratory Techniques Department

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf
Prof Dr. Aysam M. Fayed

Molecular biology:

Molecular biology is the study of molecular underpinnings of the process of replication, transcription and translation of the genetic material.

- This field overlaps with other areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA, RNA and protein biosynthesis as well as learning how these interactions are regulated.
- Much of the work in molecular biology is quantitative, and recently much work has been done at the interface of molecular biology and computer science in bioinformatics and computational biology.
- Since the late 1950s and early 1960s, molecular biologists have learned to characterize, isolate, and manipulate the molecular components of cells and organisms includes <u>DNA</u>, the repository of genetic information; <u>RNA</u>, a close relative of DNA; and <u>proteins</u>, the major structural and enzymatic type of <u>molecule</u> in <u>cells</u>.

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

The Structure of Nucleic Acids:

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

NUCLEIC ACIDS

- Nucleic acids are polymers
- Monomer---nucleotides
 - Nitrogenous bases
 - Purines
 - Pyrimidines

Nucleosid

- Sugar
 - Ribose
 - Deoxyribose
- Phosphates

es

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

The Sugars

2'-Deoxyribose (in DNA)

Pacac of DNA

Purines:

Pyrimidines:

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf

Nucleoside and Nucleotide

Hydrogen

- The bases attract each other because of hydrogen bonds.
- The 3 bonds between

The bonds are shown here with dotted lines.

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf

Deoxyadenosine 5'-phosphate (dAMP)

Deoxyguanosine 5'-phosphate (dGMP)

Pyrimidine nucleotides

Deoxycytidine 5'-phosphate (dCMP)

Deoxythymidine 5'-phosphate (dTMP)

Repeating, sugar-

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

Nucleic Acids

make up 13-34% of the dry weight in bacteria

deoxyribonucleic acid (DNA) and

ribonucleic acid (RNA)

Sugar:

- RNA ribose (OH)
- DNA deoxyribose (H)

Bases:

- adenine (A), cytosine (C), guanine (G), thymine (T)
 - RNA uses uracil (U) instead of thymine

1 Haliv

A form	
Helical Sense	Right-handed
Diameter	~26 Å
Base pairs per helical turn	11
Helical twist per base pair	33°
Helix pitch (rise per turn)	28 Å
Helix rise per base pair	2.6 Å
Base tilt normal to the axis	20°
Major groove	Narrow & deep
Minor groove	Wide & shallow
Sugar pucker	C3'-endo
Glycosidic bond	Anti

RNA, DNA/RNA hybrids, dehydrated DNA

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

D Ualis

D.C.	
B form	
Helical Sense	Right handed
Diameter	~20Å
Base pairs per helical turn	10
Helical twist per base pair	36°
Helix pitch (rise per turn)	34 Å
Helix rise per base pair	3.4 Å
Base tilt normal to the axis	6°
Major groove	Wide & deep
Minor groove	Narrow & deep
Sugar pucker	C2'-endo
Glycosidic bond	Anti

Normal DNA

Z Helix

	Z form
Helical Sense	Left-handed
Diameter	~18 Å
Base pairs per helical turn	12 (6 dimers)
Helical twist per base pair	60° (per dimer)
Helix pitch (rise per turn)	45 Å
Helix rise per base pair	3.7 Å
Base tilt normal to the axis	7°
Major groove	Flat
Minor groove	Narrow & deep
Sugar pucker	C2'-endo (pyrimidines) C3'-endo (purines)
Glycosidic bond	Anti (pyrimidines) Syn (purines)

Alternating Purine-Pyrimidine

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

Helix Parameters

	A form	B form	Z form
Helical Sense	Right handed	Right handed	Left handed
Diameter	~26 Å	~20Å	~18 Å
Base pairs per helical turn	11	10	12 (6 dimers)
Helical twist per base pair	33°	36°	60° (per dimer)
Helix pitch (rise per turn)	28 Å	34 Å	45 Å
Helix rise per base pair	2.6 Å	3.4 Å	3.7 Å
Base tilt normal to the axis	20°	6°	7°
Major groove	Narrow & deep	Wide & deep	Flat
Minor groove	Wide & shallow	Narrow & deep	Narrow & deep
Sugar pucker	C3'-endo	C2'-endo	C2'-endo (pyrimidines) C3'-endo (purines)
Glycosidic bond	Anti	Anti	Anti (pyrimidines) Syn (purines)

Physical Properties -

Molar extinction coefficient at 260 nm, € ₂₆₀ (M ⁻¹ cm ⁻¹)		
— АМР	15,400	
— GMP	11,700	
— UMP	9,900	
— dTMP	9,200	
— СМР	7,500	

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

Denaturation: "Melting"

- Heat, alkali cause the double helix to unwind
- As H-bonds break, they form "bubbles"

Different types of RNA:

1. Informational RNAs

mRNAs = messenger RNAs

(intermediates in the decoding of genes into polypeptides).

2. Functional RNAs

tRNAs = transfer RNAs

(transport amino acids to mRNA during translation).

rRNAs = ribosomal RNAs

(combine with proteins to form ribosomes).

snRNAs = small nuclear RNAs

(involved in splicing primary transcripts into mRNA in the nucleus).

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf
Prof Dr. Aysam M. Fayed

2. Functional RNAs

scRNAs = small cytoplasmic RNAs

(direct protein traffic within the cell)

siRNAs = **small interferring RNAs**

(inhibitory effects on gene expression)

miRNA = microRNA (These are tiny (~22 nts) RNA molecules that appear to regulate the expression of messenger RNA (mRNA) molecules.

XIST RNA = This inactivates one of the two X chromosomes in female vertebrates.

Each encoded by different genes

Difference between RNA &

DINA	DNA
RNA nucleotides contain ribose sugar	DNA contains deoxyribose
RNA has the base uracil	DNA has the base thymine
presence of a hydroxyl group at the 2' position of the ribose sugar.	Lacks of a hydroxyl group at the 2' position of the ribose sugar.
RNA is usually single- stranded	DNA is usually double- stranded

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

Gene: Unit of heredity

The DNA segments that carries genetic information are called genes.

Basic Components of a Gene

Each gene has

LECTURE 1 QUESTIONS SHEET

- 1- Which of the following is a nitrogenous base?
- ribose
- [©] guanine
- enzyme

Medical Laboratory Techniques Department Title of the lecture: Basics of molecular biology

• ° II

• cysteine
2- What is an example of complementary base pairing?
 an adenine binds with thymine a purine binds with a pyrimidine cytosine binds with adenine thymine binds with guanine
3- Which structure is cytosine found in?
 both DNA and mRNA DNA neither DNA nor mRNA mRNA
4- A nucleic acid monomer is called:Ribose
 A nucleosome A nucleoside
 A nucleotide Deoxyribose
 5- Which of the following bases are categorized as purines? Thymine and adenine
 Thymine, cytosine and uracil Guanine, adenine and uracil
 Guanine and cytosine Guanine and adenine The following concepts led to the hypothesis that DNA has a double helix structure:
I. The ratio of A:T is 1:1.
II. The ratio of G:C is 2:1
III. DNA strands are antiparallel

Title of the lecture: Basics of molecular biology

Prof Dr. Dina M.R. AlKhafaf Prof Dr. Aysam M. Fayed

- I and III
- I, II and III

7- The Central Dogma is a framework used to represent which of the following?

- The flow of protein to RNA
- The flow of genetic information from DNA to RNA to protein
- The flow of RNA to DNA
- The flow of protein to RNA to DNA

WITH OUR BEST WISHES