

P a g e | 1 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

ةـــيــــــذكـــال

Lecture: (7)

Encapsulation and Data Hiding in OOP
Subject: Object oriented programming I
Class: Second
Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Encapsulation and Data Hiding in OOP

Encapsulation is one of the fundamental concepts in object-oriented

programming (OOP). It describes the idea of wrapping data and the methods that

work on data within one unit. This puts restrictions on accessing variables and

methods directly and can prevent the accidental modification of data. To prevent

accidental change, an object’s variable can only be changed by an object’s method.

Those types of variables are known as private variables.

A class is an example of encapsulation as it encapsulates all the data that is

member functions, variables, etc. The goal of information hiding is to ensure that

an object’s state is always valid by controlling access to attributes that are hidden

from the outside world.

Consider a real-life example of encapsulation, in a company, there are different

sections like the accounts section, finance section, sales section etc. The finance

section handles all the financial transactions and keeps records of all the data

related to finance. Similarly, the sales section handles all the sales-related activities

and keeps records of all the sales. Now there may arise a situation when due to

some reason an official from the finance section needs all the data about sales in a

particular month. In this case, he is not allowed to directly access the data of the

sales section. He will first have to contact some other officer in the sales section

and then request him to give the particular data. This is what encapsulation is. Here

the data of the sales section and the employees that can manipulate them are

P a g e | 3 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

wrapped under a single name “sales section”. Using encapsulation also

hides the data. In this example, the data of the sections like sales,

finance, or accounts are hidden from any other section.

Protected members

Protected members (in C++ and JAVA) are those members of the class that cannot

be accessed outside the class but can be accessed from within the class and its

subclasses. To accomplish this in Python, just follow the convention by prefixing

the name of the member by a single underscore “_”.

Although the protected variable can be accessed out of the class as well as in the

derived class (modified too in derived class), it is customary(convention not a rule)

to not access the protected out the class body.

Python program to

demonstrate protected members

Creating a base class

class Base:

 def __init__(self):

 # Protected member

 self._a = 2

Creating a derived class

class Derived(Base):

 def __init__(self):

 # Calling constructor of

 # Base class

 Base.__init__(self)

 print("Calling protected member of base class: ", self._a)

 # Modify the protected variable:

 self._a = 3

 print("Calling modified protected member outside class: ",

 self._a)

obj1 = Derived()

obj2 = Base()

P a g e | 4 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Calling protected member

Can be accessed but should not be done due to convention

print("Accessing protected member of obj1: ", obj1._a)

Accessing the protected variable outside

print("Accessing protected member of obj2: ", obj2._a)

Output:

Calling protected member of base class: 2

Calling modified protected member outside class: 3

Accessing protected member of obj1: 3

Accessing protected member of obj2: 2

EX: This program simulates a patient management system for a medical clinic,

where sensitive patient data (like medical history and diagnosis) is protected using

encapsulation. This allows access only through specific methods, ensuring that data

remains secure and cannot be accidentally modified.

1. class Patient:

2. def __init__(self, name, age, medical_history):

3. self.name = name # Public attribute

4. self.age = age # Public attribute

5. self._medical_history = medical_history # Protected attribute

6. self.__diagnosis = None # Private attribute

7.

8. # Method to access medical history

9. def get_medical_history(self):

10. return self._medical_history

11.
12. # Method to update medical history

13. def add_medical_history(self, record):

14. self._medical_history.append(record)

15.
16. # Method to set a diagnosis (only accessible within the class)

17. def set_diagnosis(self, diagnosis):

18. self.__diagnosis = diagnosis

19.
20. # Method to get the diagnosis (only accessible within the class)

21. def get_diagnosis(self):

P a g e | 5 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

22. return self.__diagnosis

23.
24. # Display patient information

25. def display_info(self):

26. print(f"Name: {self.name}, Age: {self.age}")

27. print("Medical History:", self.get_medical_history())

28. print("Diagnosis:", self.get_diagnosis())

29.
30. # Simulating the medical system

31. # Creating a patient with some initial medical history

32. patient1 = Patient("John Doe", 45, ["High Blood Pressure", "Diabetes"])

33.
34. # Accessing protected medical history via method

35. print("Patient's Initial Medical History:", patient1.get_medical_history())

36.
37. # Adding a new record to the medical history

38. patient1.add_medical_history("Cholesterol Issue")

39.
40. # Setting a diagnosis using the encapsulated method

41. patient1.set_diagnosis("Stable Condition")

42.
43. # Displaying patient info (using the encapsulated display method)

44. patient1.display_info()

45.
46. # Accessing the private diagnosis directly (should not be done)

47. # print(patient1.__diagnosis) # This will raise an AttributeError

https://www.programiz.com/online-compiler/1VrTcOTxZGKcg

Explanation

1. Encapsulation:

o _medical_history is a protected attribute, meaning it should not be

accessed directly outside the class. Access to it is provided through

the methods get_medical_history and add_medical_history.

https://www.programiz.com/online-compiler/1VrTcOTxZGKcg

P a g e | 6 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

o __diagnosis is a private attribute, meaning it’s intended to be used

only within the Patient class and should not be accessed or modified

directly from outside the class. Instead, the methods set_diagnosis

and get_diagnosis are used to interact with it.

2. Methods:

o get_medical_history() returns the protected medical history of the

patient.

o add_medical_history(record) adds a new entry to the medical

history.

o set_diagnosis(diagnosis) and get_diagnosis() provide a

controlled way to set and retrieve the diagnosis.

3. Usage:

o The program creates a patient and interacts with their medical

information only through designated methods, demonstrating how

encapsulation helps secure and control access to sensitive data.

Output

Patient's Initial Medical History: ['High Blood Pressure', 'Diabetes']

Name: John Doe, Age: 45

Medical History: ['High Blood Pressure', 'Diabetes', 'Cholesterol Issue']

Diagnosis: Stable Condition

Note: Attempting to access __diagnosis directly from outside the class

(e.g. patient1.__diagnosis) will result in an AttributeError, demonstrating the

encapsulation of the private attribute.

-

P a g e | 7 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

- Example that focuses on a hospital management system where patient information is

encapsulated. In this example, we’ll have a Doctor class that manages patients’

sensitive information such as prescriptions and medical notes. This data will be

protected, allowing only specific access methods.

class Doctor:

 def __init__(self, name, specialty):

 self.name = name # Public attribute

 self.specialty = specialty # Public attribute

 self._patients = [] # Protected attribute to store patient info

 # Method to add a new patient

 def add_patient(self, patient_name, age, ailment):

 patient = {

 "name": patient_name,

 "age": age,

 "ailment": ailment,

 "_prescription": None, # Protected attribute for prescription

 "_notes": [] # Protected attribute for doctor's notes

 }

 self._patients.append(patient)

 print(f"Patient {patient_name} added.")

 # Method to prescribe medication to a specific patient

 def prescribe_medication(self, patient_name, prescription):

 for patient in self._patients:

 if patient["name"] == patient_name:

 patient["_prescription"] = prescription

 print(f"Prescription for {patient_name} updated.")

 return

 print(f"Patient {patient_name} not found.")

 # Method to add a medical note for a specific patient

 def add_medical_note(self, patient_name, note):

 for patient in self._patients:

 if patient["name"] == patient_name:

 patient["_notes"].append(note)

 print(f"Note added for {patient_name}.")

P a g e | 8 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 return

 print(f"Patient {patient_name} not found.")

 # Method to display patient information (without direct access to

protected data)

 def display_patient_info(self, patient_name):

 for patient in self._patients:

 if patient["name"] == patient_name:

 print(f"\nPatient Name: {patient['name']}")

 print(f"Age: {patient['age']}")

 print(f"Ailment: {patient['ailment']}")

 print(f"Prescription: {patient['_prescription']}")

 print(f"Medical Notes: {patient['_notes']}")

 return

 print(f"Patient {patient_name} not found.")

Simulating the hospital system

doctor = Doctor("Dr. Smith", "Cardiology")

Adding patients to the doctor's list

doctor.add_patient("Alice Brown", 30, "Arrhythmia")

doctor.add_patient("Bob White", 45, "Hypertension")

Prescribing medication and adding medical notes for patients

doctor.prescribe_medication("Alice Brown", "Beta Blockers")

doctor.add_medical_note("Alice Brown", "Patient should reduce caffeine

intake.")

doctor.add_medical_note("Alice Brown", "Recommended follow-up in 3

months.")

doctor.prescribe_medication("Bob White", "ACE Inhibitors")

doctor.add_medical_note("Bob White", "Patient advised to exercise

regularly.")

Displaying patient information

doctor.display_patient_info("Alice Brown")

doctor.display_patient_info("Bob White")

P a g e | 9 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

https://www.programiz.com/online-compiler/3vCtIyZPAawEK

Output
Patient Alice Brown added.

Patient Bob White added.

Prescription for Alice Brown updated.

Note added for Alice Brown.

Note added for Alice Brown.

Prescription for Bob White updated.

Note added for Bob White.

Patient Name: Alice Brown

Age: 30

Ailment: Arrhythmia

Prescription: Beta Blockers

Medical Notes: ['Patient should reduce caffeine intake.', 'Recommended follow-up in 3 months.']

Patient Name: Bob White

Age: 45

Ailment: Hypertension

Prescription: ACE Inhibitors

Medical Notes: ['Patient advised to exercise regularly.']

https://www.programiz.com/online-compiler/3vCtIyZPAawEK

P a g e | 10 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Data Hiding is an essential concept in object-oriented programming (OOP) that helps protect the

internal object data from unauthorized access or modification. By concealing certain details of an

object, data hiding allows developers to safeguard an object's state and integrity, only exposing

data and methods necessary for other parts of the program to function.

Key Points of Data Hiding

1. Restriction of Access: Data hiding restricts direct access to the attributes and methods of

a class. By doing so, it ensures that only authorized methods within the class can access

or modify the hidden data. This is typically achieved through the use of access modifiers

like private or protected.

2. Use of Private Variables: In many languages (e.g., Python, C++, Java), you can make an

attribute private (i.e., only accessible within the class) by prefixing it with certain

symbols:

o In Python, prefixing a variable name with __ (double underscore) makes it

private.

o In Java and C++, using the private keyword restricts access to within the class.

3. Controlled Access Through Methods: Data hidden through encapsulation can be

accessed only by designated methods (getters and setters). This approach provides

controlled and secure access, allowing changes to the internal data only in a regulated

way.

4. Improved Code Security and Integrity: Data hiding prevents external code from

interfering with an object's internal data, which helps maintain the integrity of the data.

This is especially important for applications that involve sensitive data or require

stability, such as financial and healthcare systems.

5. Implementation Independence: By hiding internal data, a class can be modified or

updated without affecting other parts of the program that rely on it. External code

interacts only with the exposed methods, so internal changes do not impact how the class

is used.

Example of Data Hiding in Python

Here's a Python program that demonstrates data hiding in a banking system. In this example, the

BankAccount class has a private balance attribute, and access to it is restricted by deposit()

and withdraw() methods. Direct access to balance is not allowed.

P a g e | 11 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

class BankAccount:

 def __init__(self, account_holder, initial_balance=0):

 self.account_holder = account_holder # Public attribute

 self.__balance = initial_balance # Private attribute, hidden from outside

 # Method to get the balance

 def get_balance(self):

 return self.__balance

 # Method to deposit money

 def deposit(self, amount):

 if amount > 0:

 self.__balance += amount

 print(f"{amount} deposited. New balance: {self.__balance}")

 else:

 print("Invalid deposit amount.")

 # Method to withdraw money

 def withdraw(self, amount):

 if 0 < amount <= self.__balance:

 self.__balance -= amount

 print(f"{amount} withdrawn. New balance: {self.__balance}")

 else:

 print("Invalid withdrawal amount or insufficient funds.")

Simulating bank account operations

account = BankAccount("Alice", 1000)

Trying to deposit and withdraw money

account.deposit(500) # Valid operation

account.withdraw(200) # Valid operation

Trying to access the private balance attribute directly

print(account.__balance) # This will raise an AttributeError

Accessing the balance through the designated method

print("Current balance:", account.get_balance())

https://www.programiz.com/online-compiler/6rlj2Z6rD4Vn5

https://www.programiz.com/online-compiler/6rlj2Z6rD4Vn5

P a g e | 12 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Explanation

1. Private Data Attribute:

o __balance is a private attribute. This data cannot be accessed directly from

outside the class, ensuring the account balance remains secure.

2. Controlled Access:

o Only the deposit() and withdraw() methods can modify the balance, and the

get_balance() method provides controlled access to the balance. This ensures

that any changes to the balance follow business rules (e.g., no negative deposits or

over-withdrawals).

3. Encapsulation and Data Hiding:

o The BankAccount class hides the __balance attribute from the outside world.

Any interaction with the balance occurs through carefully controlled methods,

preventing accidental or unauthorized modifications.

Benefits of Data Hiding in the Example

 Security: The balance is protected from being changed directly, reducing the risk of

accidental or unauthorized modifications.

 Integrity: Only the deposit() and withdraw() methods can alter the balance, ensuring

that balance updates follow specific conditions.

 Maintainability: Internal details of how balance is managed are hidden, so any changes

made to the class’s internal structure will not affect external code that uses the

BankAccount class.

