Numerical Integration

Numerical Integration Approximation.

Integration is the process of measuring the area under a function plotted on a graph.
Sometimes, the evaluation of expressions involving these integrals can become
daunting, if not indeterminate. For this reason, a wide variety of numerical methods
have been developed to find the integral.

Here we discuss six different methods for approximating the value of a definite
integral. Each method revolves around associating a definite integral with area under a
curve. The first three use areas of rectangles, the fourth uses areas of trapezoids, and
the final approximation technique uses areas of shapes that include a portion of a
parabola.

4.1 Left-Endpoint Approximation

On each of the four subintervals shown below, we create a rectangle whose width is the
length of the subdivision and whose height is determined by the function value at the
left endpoint of each subdivision.

width: Ax, height: f(xo) = f(0)

width: Ax, height: f(x1) = f(Ma)

width: Ax, height: f(x,) = ()

/width: AX, height: f(xs) = f(%/a)

y=f(x)=e*

The sum of the areas of the four rectangles represents our approximation for the area
under the curve and therefore represents an approximation for the value of the definite
integral:
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1
[ dxm Ax- £ () + AX- () +AX- () +Ax- f(x,)
0

~ AX(F (%) + F(x)+ (%) + F(x;))
~ AXi f (Xi)

This same sequence of steps can be generalized for left-endpoint approximation of the

b
definite integral jf(x)dx using n subdivisions:

a

b
I f()dx = Ax- f (X)) +Ax- F(x)+A +Ax- f(x,,)+Ax- f(x, ;)

~ AX(F () + T ) +A + (%, ,)+ (%))

~ Axni f(x)
i=0

4.2 Right-Endpoint Approximation

Again we create rectangles whose widths are each the length of a subdivision, but here
each height is determined by the function value at the right endpoint of each
subinterval.

width: Ax, height: f(x,) = f(*/4)

width: Ax, height: f(x,) = (/)

y="f(x)=e width: Ax, height: f(xs) = ()

idth: Ax, height: f(x4) = f(1)

The sum of the areas of these four rectangles represents a right-endpoint approximation
for the area under the curve and therefore is an approximation for the value of the
definite integral:
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e dx ~ AX- f(x)+Ax- f(X,)+Ax- f(x)+Ax- f(X,)

O ey

~ AX(f (%) + F(X,)+ F(x)+ f(x,))
zAXif(Xi)

This same sequence of steps can be generalized for right-endpoint approximation of

b
the definite integral [ f(x)dx using n subdivisions:

b
jf(x)dXzAx- f(x)+AX- fF(X,)+A +Ax- f(X,,)+Ax-f(X,)

~ AX(F () + T Q) +A + F(x0)+ F(x,)

~ X3 1 (x)

4.3 Midpoint Approximation

For a third time we create rectangles each of whose width is the length of the
subdivision, but now each height is determined by the function value at the midpoint of
each subdivision.

width: Ax, height: f((xo*+x1)l2) = f(/s)

width: Ax, height: f((xi+x2)/2) = f(%/s)
2
y=f(x)=¢e™" width: Ax, height: f((xa+xs)/) = f(ls)

width: Ax, height: f((xs*+xa)/>) = f('ls)

|

The sum of the areas of these four rectangles represents a midpoint approximation for

the area under the curve and therefore is another approximation for the value of the
definite integral:

Numerical Analysis /Lec. 4 -29-
Third Class



1
[edxsaxe f(ujmx- f(u)wx- f(MJ+Ax- f(—"3+x4)
0 2 2 2 2

~ Ax f(x0+xlj+f(x1+x2j+f(x2+x3J+f(x3+x4)
2 2 2 2
S [ X+ X
~A f i i+1
S i(5)

This same sequence of steps can be generalized for midpoint approximation of the

b
definite integral J.f(x)dx using n subdivisions:

X1+X2D+A +(Ax« f(—X”‘1+X” D+[Ax« f(x" +X””D
2 2 2

+ X

4.4 Trapezoidal Rule

Trapezoidal rule is based on the Newton-Cotes formula that if one approximates the
integrand by an n™ order polynomial, then the integral of the function is approximated
by the integral of that n" order polynomial. Integrating polynomials is simple and is
based on the calculus formula. The height of each trapezoid is the length of the
subdivision. The two bases of each trapezoid correspond to the values of the function at
the endpoints of the subinterval on which the trapezoid has been drawn.

height: Ax, bases: f(*/,) and f(*/>)

height: Ax, bases: f(0) and f(*/4)

2
=f(x)=e"
y="1x) height: Ax, bases: f(*/,) and f(*/4)

height: Ax, bases: f(*/s)and f(1)
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It may be useful to remove the first of these trapezoids and rotate it into a more
conventional orientation as we calculate its area.

base length: f(0)

height:Ax - Area = /5(Ax) (f(0) + f(*/4))

base length: f(*/,)
The sum of the areas of these four trapezoids represents an approximation for the area

under the curve and therefore is one more approximation for the value of the definite
integral:

- 2
I e dx
0

X
/‘—“\

2010+ 1) 380 (1 )+ £) |+

w106+ £00) |+ 38 (100) 100

AX(F (%) +2F (%) +2F(x,)+2F (%) + F(x,))

A" (F(x) + F (%)

i=0

VR

I\)IH I\JII—‘ I\>II—‘

This same sequence of steps can be generalized for trapezoid approximation of the
b

definite integral jf(x)dx using n subdivisions:

jf(x)dx (;Ax f(x)+f(xl))j G ~(f(x1)+f(x2))]+A

+ %Ax f(xn1)+f(xnl))] G -(f(xn1)+f(xn))j

NEN AX(f (%) +2F (%) +2F(x,) +A

+2F (x,0) + 2 (%) + (x,))
Single Segment Trapezoidal Rule

j f (x)dx z%AX(f 06+ f(%,1)

Multiple Segments Trapezoidal Rule

Tf(x)dngAx_nZ_f(f(xw f(%.))

-31-
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Example 4.1

. 1 dx ; e ey . ;
Evaluate the integral 1 = by trapezoidal rule dividing the interval [0, 1] into
g j o bytrap g [0, 1]

five equal parts.

Solution
n=>5
AX = ﬂ =0.2
5
X 0 0.2 0.4 0.6 0.8 1.0
1

- 1.0 1 0.98058 | 0.92848 | 0.85749 | 0.78087 | 0.70711

1+ X

From Trapezoidal Rule;

| :%[f (%) + 2(F (%) + T (%) + F(X,)+ F (%)) + F(X)]

= 0;22[1+ 2(0.98058 + 0.92848 + 0.85749 + 0.78087) + 0.70711]

=0.88016

Example 4.2

Use Multiple-segment Trapezoidal Rule to find the area under the curve f(x) = 1300>i
+e

from x=0 to x=10.

Solution

Using two segments, we get
~10-0
2
300(0)

0

AX =5

f(0) = 0

1+e

- 200 -

10.039

300(10)
fa0)=""5 =

0.136

Area:g[f (0)+2F(5)+ f(10)] = g[o +2(10.039) + 0.136] = 50.535
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12 300x

So what is the true value of this integral? j .
o1T€

dx = 246.59

X

Making the relative true error | |= |246'59 —50.535/, 1 00%% — 79.506%

24659 |
10
Table: Values obtained using Multiple-segment Trapezoidal Rule for I fi(:i dx
0
n Approximate E, ‘ €, ‘
Value
1 0.681 245.91 99.724%
2 50.535 196.05 79.505%
4 170.61 75.978 30.812%
8 227.04 19.546 7.927%
16 241.70 4.887 1.982%
32 245.37 1.222 0.495%
64 246.28 0.305 0.124%
Example 4.3
The average values of a function can be determined by:-
T2
j CpdT
— Tl
Cpmh - -I-2 _Tl

C,=0.99403 +1.617x10*T+9.7215x10°T* ~ 9.5838 x 10™ T° + 1.9520 x 10™ T*
C, in KJ/(Kg K)
Use this relationship to verity the average value of specific heat of dry air in the
range from 300 K to 450 K:
1) Analytically
2) Numerically using five points Trapezoidal Rule
Solution

450

[0.99403+1.617x10*T +9.7215x10°T* -9.5838 x10™ T° +1.9520x10* T*dT

_ 300

1) Cp. =
) CPa 450 — 300

4 5 1 44 450
2 3 4 5 300

C =
P 450 —300
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465.73-306.18

P, = 250 300 =1.0637
2) AT = w =375
T 300 3375 375 412.5 450
Cp 1.0489 1.0562 1.0637 1.0711 1.0785
Cp., = (dT/2)*(Cp(1)+2*(Cp(2)+Cp(3)+Cp(4))+Cp(5))
™ T 2_T1
(37.5/2)*(1.0489 + 2*(1.0562 +1.0637 +1.0711) +1.0785) _ 10637
450 —300 -

Analytical Solution - Numerical Solution 0% — 1.0637-1.0637

Analytical Solution 1.0637

Realative Error % =

% =0%

4.5 Simpson’s Rule (1/3 Simpson’s Rule)

The final approximation technique we develop in this section is called Simpson’s Rule.
It is different from the first four methods because we are not creating polygons on each
subinterval but rather we create a figure with a non-straight component to it. For this
method, it is required that the number of subintervals be an even number.

A parabola is created that contains the
points (Xo,f(Xo)), (X1,f(x1)), and (xz,f(x2)).

ey

y=f(x)=e*

Another parabola is
created that contains
the points (x2,f(x2)),

T
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Simpson’s Rule uses pairs of subdivisions and creates over each pair a parabola that
contains the points (Xaio, f(Xsi-2)), (Xoi-1, f(X2i.1)), and (Xzi, f(X2;)) for i going from 1 to "/,.
A shape is created using the resulting parabola, two vertical segments—one from
(X2i-2,0) to (X2i_2, f(X2i2)) and one from (Xi+2,0) t0 (Xois2, f(Xoi+2))—and the segment on
the x-axis with endpoints (X,i.»,0) and (X,i+»,0). The area of the resulting shape—such as
of the red-shaded figure above or the green-shaded figure above-is calculated using the

formula Ax. %(f (11) + 45 () + F (%0.0)).

The sum of the areas of these shapes represents an approximation for the area under the
curve and therefore is an approximation for the value of the definite integral:

J1.e K (Ax Z(F(x)+4f(x)+ f(xz))j (Ax-%(f(x2)+4f(x3)+ f(x4))j

This same sequence of steps can be generalized for the Simpson’s Rule approximation

b
of the definite integral _[f(x)dx using n subdivisions:

a

i f(X)dx ~ (Axé(f () +4F (%) + f(xz))J FA +(Ax-%(f (%) +4F(x, )+ f (xn))j
<A Z(F06) +4100) + 106) +A + %) +41(x,)+ T(x)

Single Segment 1/3 Simpson’s Rule
jf(x)dx~ 2 (£ () + 4 (4) + £ (%))

Multiple Segment 1/3 Simpson’s Rule

jf(x)dx~—ﬁ (f (o) +4F (%) + F (%)

Example 4.4
0.8 dX

Evaluate the integral | = I by 1/3 Simpson’s rule dividing the interval [0, 0.8]
0o V1+ X2

to 4 equal sub-intervals.
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Solution

n=4
AX = 08-0_ 0.2
4
X 0 0.2 0.4 0.6 0.8
1

1.0 0.91287 | 0.84515 | 0.79057 | 0.74536

1+ X2

From Simpson’s 1/3" Rule

| =Off (X)dX=%[(f (X)) +4F(x)+ F(X%))+(F(x)+4F(x)+ f(x))]

= %[f (%) + 40T (4) + TO6)]+ 21 (%) + T(x,)]

= %[1.0 +4[0.91287 +0.79051] + 2 x 0.84515 + 0.74536]
= 0.68329

4.6 Simpson’s Rule (3/8 Simpson’s Rule)

If we connect the points of the curve using a 3™ order Lagrange polynomial, the area

under the curve can be approximated by the following formula:

3;:([1:(X0)+3f(xl)+3f(X2)+2f(X3)+3f(X4)+3f(X5)

+2F(Xg)+. +2F (X, 5) +3F(X,,) +3F (X, )+ F(X,)]

[RIOLYE

Single Segment 3/8 Simpson’s Rule

if(X)dXzLQX[f(XO)+3f(X1)+3f(xz)+ f(x;)]

Multiple Segment 3/8 Simpson’s Rule

b Y5
J £ 09= 225 (0 5) + 31 06, 3 (00 + )

i=1
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Example 4.5
Evaluate the integral of the following tabular data with
(@) The trapezoidal rule.

(b) Simpson’s rules.

X 0 0.1 0.2 0.3 0.4 0.5
F(X) 1 8 4 3.5 5 1
Solution

(a) Trapezoidal rule (n =5):

| :07'1[1+ 2(8+4+35+5)+1]=2.15

(b) Simpson’s rules (n = 5):

| = 0?'1[1+ 4(8) + 4] + 0.12[4 +3(3.5+5)+1] =1.233333+1.14375=2.377083

Example 4.6
The volume of is given by following expression:
_ Fu OJ-Q dx,
CAo 0 k(l_ XA)
Withk =2.7x10" exp(-6500/T) min"and T =325+ 19000x, using
120.35x, +143.75

Fao = 1500mol/min, cA=2.5mol L™

Calculate the volume of the reactor using Simpsons rule with five points (4 steps).
Solution

Xa T k 1
k(l-x,)
0 325.0000 0.0557 17.9691
0.2250 350.0251 0.2325 5.5491
0.4500 368.2020 0.5816 3.1263
0.6750 382.0035 1.1005 2.7958
0.9000 392.8396 1.7597 5.6827

V = (1500/2.5)*(0.225/3) * (23.1031+ 4 * 7.1346 + 2* 4.0195 + 4*3.5947 + 7.3063)
=3661.4L

A Matlab program for solving example 4.5 is listed in Table 4.1.
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Table (4.1

) Matlab code and results for solution example (4.5)

Xa=0:0.225:0.9
Matlab T=325+(19000*Xa)./(120.35*Xa+143.75)
k=2.7e7*exp(-6500./T)
Code | 1 /k*(1-Xa))
V=(1500/2.5)*(0.225/3)*(f(1)+4*f(2)+2*f(3)+4*f(4)+f(5))
Xa=
0 0.2250 0.4500 0.6750 0.9000
T=
325.0000 350.0251 368.2020 382.0035 392.8396
k =
Results 0.0557 0.2325 0.5816 1.1005 1.7597
f=
17.9691 5.5491 3.1263 2.7958 5.6827
V=
2.8478e+03
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