

COLLEGE OF ENGINEERING AND TECHNOLOGIES ALMUSTAQBAL UNIVERSITY

Electronics Fundamentals CTE 204

Lecture 10

- Full-Wave Rectifier (Center - Tapped) - (2024 - 2025)

Dr. Zaidoon AL-Shammari

Lecturer / Researcher

zaidoon.waleed@mustaqbal-college.edu.iq

The Full-Wave Rectifier (FWR)

The result of full-wave rectification is a DC output voltage that pulsates every half-cycle of the input, as shown in Figure below.

The average value for a full-wave rectified output voltage is twice that of the half-wave rectified output voltage, expressed as follows:

$$V_{AVG} = \frac{2V_{p(out)}}{\pi}$$

Center-Tapped Full-Wave Rectifier

The difference between half-wave and full-wave rectification is that:

> Half-wave rectifier:

Allows only one-half of the current to the load during the entire input cycle.

> Full-wave rectifier:

Allows unidirectional current to the load during the entire input cycle.

Center-Tapped Full-Wave Rectifier

Full-Wave Bridge Rectifier

Center-Tapped Full-Wave Rectifier

- The center-tapped (CT) full-wave rectifier uses two diodes connected to the secondary of a center-tapped transformer.
- > The input signal is coupled through the transformer to the secondary.
- ➤ Half of the secondary voltage appears between the center tap and each end of the secondary winding.

Positive half-cycle

For a positive half-cycle of the input voltage, the polarities of the secondary voltages are shown in Figure below.

- a) Forward-biases the upper diode D_1 .
- b) Reverse-biases the lower diode D₂.

The current path is through D_1 and the load resistor RL, as indicated.

Negative half-cycle

For a negative half-cycle of the input voltage, the polarities of the secondary voltages are shown in Figure below.

- a) Forward-biases the upper diode D_2 .
- b) Reverse-biases the lower diode D_1 .

The current path is through D₂ and the load resistor RL, as indicated.

Positive – Negative cycle

Positive half-cycle

Negative half-cycle

Effect of the Turns Ratio n

- > The output voltage is determined by the turns ratio n of the transformer.
- The peak output voltage is one-half the peak secondary voltage.
- \succ The primary voltage V_{pri} is the same as the input voltage V_{in} .

Example

To obtain an output voltage $V_{p(out)}$ with a peak value approximately equal to the input peak $V_{p(in)}$, what would be the turn ratio n of a transformer?

Sol:

$$V_{p(out)} = \frac{nV_{p(in)}}{2}$$

$$n = \frac{2V_{p(out)}}{V_{p(in)}}$$

Since, $V_{p(out)}$ equal $V_{p(in)}$

$$n = 2$$

Example

Specify the turns ratio of a transformer required for a center-tapped full wave rectifier if the input voltage is 311 V and the required output is 12 V peak?

Sol:

$$n = \frac{2V_{p(out)}}{V_{p(in)}}$$

$$n = \frac{2 \times 12}{311} = 0.0771$$

Example

For a center-tapped full-wave rectifier if the input voltage is 311 V, What is the peak output if the turns ratio is 0.15?

Sol:

$$V_{p(out)} = \frac{nV_{p(in)}}{2}$$

$$V_{p(out)} = \frac{0.15 \times 311}{2} = 23.3 V$$

Peak Inverse Voltage (PIV)

- Each diode in the FWR is alternately forward-biased and then reverse-biased.
- The maximum reverse voltage VR that each diode must withstand is the peak value of the total secondary voltage $V_{p(sec)}$.

AL- MUSTAQBAL UNIVERSITYCOMPUTER TECHNIQUES ENGINEERING

