

Republic of Iraq Ministry of Higher Education & Scientific research Al-Mustaqbal University Science College Medical physics Department

Analytical Chemistry

For

First Year Student

Lecture 3

By

Dr. Karrar M. Obaid

2024-2025

The relationship between molarity, normality and part per million

1- ppm= M×M.wt×1000

2- ppm= N×M.wt×1000

Example :(a) Calculate the molar conc. of 1.0 ppm solutions each of Li^+ and Pb^{+2} .(b) What weight of $\text{Pb}(\text{NO}_3)_2$ will have to be dissolved in 1 liter of water to prepare a 100 ppm Pb^{+2}

solution:

$$M = \frac{ppm}{m.wt \times 1000}$$
$$MLi + = \frac{1.0}{6.94 \times 1000} = 1.44 \times 10 - 4 \text{ mole/L}$$
$$Mpb = \frac{1.0}{207 \times 1000} = 4.83 \times 10 - 6 \text{ mole/L}$$
$$M + = \frac{100}{207 \times 1000} = 4.83 \times 10 - 4 \text{ mole/L}$$
$$M = \frac{wt}{m.wt} \times \frac{1000}{V \text{ mL}}$$
$$4.83 \times 10 - 4 = \frac{wt}{283.2} \times \frac{1000}{1000}$$

Wt= 0.137g pb(NO₃)₂

Example: The concentration of Zinc ion (Zn^{+2}) in blood serum is about (1ppm). Express this as meq/L.

Q1:- Calculate the molar concentration of 1 ppm solutions of each of the following?

a) AgNO3 b) Al₂ (SO₄)₃ c) CO₂ d) HClO₄

Q2: Calculate the ppm conc. Of 2.5×10^{-4} M solutions of each of the following ? a) Ca⁺² b) CaCl₂ c) HNO₃ d) KCN

Molarity concentration for solution prepared from dissolved liquid solute in liquid solvent.

$$M = \frac{\% \times \text{density} \times 1000}{M.wt} = \frac{\% \times \text{sp.gr} \times 1000}{M.wt}$$

Notice -The Specific gravity (sp. gr.) its without unit.

Density: is the weight per unit volume at the specified temperature, usually (gm/mL) or (gm/cm³) or (gm.cm⁻³) in 20C (is the ratio of the mass in (gm) and volume (mL).

Example :Calculate the molarity of 28.0% NH3, specific gravity 0.898.

Solution:

M.wt NH₃=14+(3×1)=17 $M = \frac{\% \times \text{density} \times 1000}{M.wt}$ $M = \frac{\frac{28}{100} \times 0.898 \times 1000}{17}$ M= 16.470 mmol mL =16.470 M

Diluting Solutions: We often must prepare dilute solutions from more concentrated stock solutions. For example ,we may prepare a dilute HCL solution from concentrated HCL to be used for titration .Or ,we may have a stock standard solution from which we wish to prepare a series of more dilute standards. The

millimoles of stock solution taken for dilution will be identical to the millimoles in the final diluted solution.

Mstock × Vstock = Mdiluted × Vdiluted

Example: What is the molarity and normality of a 13.0% solution of H_2SO_4 ? To what volume should 100 ml of acid be diluted in order to prepare a 1.50 N solution?

Solution: From specific gravity table in the appendix, the specific gravity of the acid is 1.090.

 $M = \frac{\% \times \text{sp. gr} \times 1000}{M. wt}$ $\frac{0.13 \times 1.09 \times 1000}{98}$

M=1.45 M

 $M_1 \times V_1 \!=\! M_2 \!\times$

 $\textbf{2.90} \times \textbf{100=1.50} \times \mathbf{V}_2$

V₂=193 mL

p- Functions

Scientists frequently express the concentration of a species in terms of its p-function, or p-value. The p-value is the negative logarithm (to the base 10) of the molar concentration of that species. Thus, for the species X,

pX = -log [X]

As shown by the following examples, p-values offer the advantage of allowing concentrations that vary over ten or more orders of magnitude to be expressed in terms of small positive numbers

Example :Calculate the p-value for each ion in a solution that is 2.00×10^{-3} NaCl and 5.4×10^{-4} M in HCl.

Solution:

NaCl \longrightarrow Na⁺ + Cl- , HCl \longrightarrow H⁺ + ClpH = -log [H^{+]} = -log (5.4 × 10-4) = 3.27 pNa = -log (2.00 × 10-3) = -log 2.00 × 10⁻³ = 2.699 [Cl-] = 2.00 × 10⁻³ M + 5.4 × 10⁻⁴ M =2.00 × 10⁻³ M + 0.54 × 10⁻³ M = 2.54 × 10⁻³ M pCl = -log 2.54 × 10⁻³ M = 2.595

Example :Calculate the molar concentration of Ag+ in a solution that has a pAg of 6.372.

solution:

pAg = -log [Ag+] = 6.372, log [Ag+] = - 6.372
[Ag ⁺] =
$$\frac{-6.372}{log}$$
 = Log ⁻¹ (- 6.372) = 4.246 × 10⁻⁷ = 4.25 × 10⁻⁷ M