D = minimum distance between centers of cells that use the same frequency band (called co-channels)

R = radius of a cell

d = distance between centers of adjacent cells $d = \sqrt{3}R$

N = number of cells in a pattern (Cluster size)

(Each cell in the pattern uses a unique set of frequency bands), termed the *reuse factor*

In a hexagonal cell pattern: in order to tessellate (to connect without gaps between adjacent cells), only the following values of *N* are possible:

Hence, possible values of *N* are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, and so on.

Choice of N (assuming constant cell size)

Small N:

- •More cluster are required to cover the service area
- More capacity
- •Higher probability of co-channel interference

Large N:

- •Less cluster are required to cover the service area
- •Less capacity
- •Less probability of co-channel interference

The following relationship holds:

$$\frac{D}{R} = q = \sqrt{3N}$$

Where q is the reuse ratio.

This can also be expressed as

$$\frac{D}{d} = \sqrt{N}$$

Consider a cellular system which has a total of K duplex channels available for use. If each cell is allocated a group of C channels (C < K), and if the K channels are divided among N cells into channel groups which each have the same number of channels, the total number of available radio channels can be expressed as

$$K = C N$$

where

$$K = \frac{Spectrumbandwidth(orTotalbandwidth)}{Channelbandwidth}$$

The N cells which collectively use the complete set of available frequencies is called a cluster. If a cluster is replicated M times within the system, the total number of duplex channels, can be used as a measure of capacity and is given

$$Capacity = MCN = MK_{\perp}$$

The capacity of a cellular system is directly proportional to the number of times a cluster is replicated in a fixed service area.

The cluster size (N) is typically equal to 4, 7, or 12.

If *N* is reduced while the cell size is kept constant, more clusters are required to cover a given area and hence more capacity is achieved.

- A large cluster size indicates that the ratio between the cell radius and the distance between co-channel cells is large.
- A small cluster size indicates that co-channel cells are located much closer together.

From a design viewpoint, the smallest possible value of N is desirable in order to maximize capacity over a given coverage area.

To find the nearest co-channel neighbors of a particular cell, one must do the following:

- i. Move *i* cells along any chain of hexagons and then
- ii. Turn 60 degrees counter-clockwise and move j cells. This is illustrated in Figure below for i = 3 and j = 2 (example, N = 19).

Example 1

Assume a system of 32 cells with a cell radius of 1.6 km, a total of 32 cells, a total frequency bandwidth that supports 336 traffic channels, and a reuse factor of N = 7.

- (a) If there are 32 total cells, what geographic area is covered, how many channels are there per cell, and what is the total number of concurrent calls that can be handled?
- (b) Repeat for a cell radius of 0.8 km and 128 cells.

Solution:

(a)

The area of a hexagon of radius R is

$$Area_a = \frac{3\sqrt{3}}{2}R^2 = \frac{3\sqrt{3}}{2}(1.6)^2 = 6.65 \,\mathrm{km}^2$$

The total area covered is $6.65 \times 32 = 213 \text{ km}^2$.

For N = 7, the number of channels per cell is K/N = 336/7 = 48,

Total number of concurrent calls that can be handled is

$$Capacity = 48 \times 32 = 1536$$
 channels

(b)

The area of a hexagon of radius R is

$$Area_b = \frac{3\sqrt{3}}{2}R^2 = \frac{3\sqrt{3}}{2}(0.8)^2 = 1.66 \,\mathrm{km}^2$$

The area covered is $1.66 \times 128 = 213 \text{ km}^2$.

The number of channels per cell is K/N = 336/7 = 48,

Total number of concurrent calls is

$$Capacity = 48 \times 128 = 6144$$
 calls

Example 2

Consider a cellular system in which total available voice channels to handle the traffic are 960. The area of each cell is 6 km² and the total coverage area of the system is 2000 km². Calculate:

- (a) The system capacity if the cluster size N is 4
- (b) The system capacity if the cluster size is 7.
- How many times would a cluster of size 4 have to be replicated to cover the entire cellular area? Does decreasing *N* increase the system capacity? Explain.

Solution

Total available channels = 960, Cell area = 6 km^2

Total coverage area = 2000 km^2

(a) N = 4

Area of a cluster = $4 \times 6 = 24 \text{ km}^2$

Number of clusters for covering total area = $2000/24 = 83.33 \sim 83$

Number of channels per cell = 960/4 = 240

System capacity = $83 \times 960 = 79$, 680 channels

(b) N = 7

Area of cluster = $7 \times 6 = 42 \text{ km}^2$

Number of clusters for covering total area = $2000/42 = 47.62 \sim 48$

Number of channels per cell = $960/7 = 137.15 \sim 137$

System capacity = $48 \times 960 = 46,080$ channels

It is evident when we decrease the value of N from 7 to 4, we increase the system capacity from 46,080 to 79,680 channels. Thus, decreasing N increases the system capacity.