

College of Science

Intelligent Medical System Department

المحاضرة الخامسة

INTEGRATION

المادة : الرياضيات المرحلة : الاولى اسم الاستاذ: م.م. ريام ثائر احمد

Al-Mustaqbal University College of Science

Intelligent Medical System Department

Integration

The idea of integration is that we can compute many quantities by breaking them into small pieces, and then summing the contribution from each small part.

1. Indefinite integrals:

The set of all anti derivatives of a function is called indefinite integral of the function. Assume u and v denote differentiable functions of x, and a, n, and c are constants, then the integration formulas are:-

1)
$$\int du = u(x) + c$$

2)
$$\int a \cdot u(x) dx = a \int u(x) dx$$

3)
$$\int (u(x) \mp v(x)) dx = \int u(x) dx \mp \int v(x) dx$$

4)
$$\int u^{n} du = \frac{u^{n+1}}{n+1} + c \quad \text{when} \quad n \neq -1 \quad \& \quad \int u^{-1} du = \int \frac{1}{u} du = \ln u + c$$

5)
$$\int a^{u} du = \frac{a^{u}}{\ln a} + c \quad \Rightarrow \quad \int e^{u} du = e^{u} + c$$

<u>EX-1</u> – Evaluate the following integrals:

$$1) \int 3x^{2} dx \qquad 6) \int \frac{x+3}{\sqrt{x^{2}+6x}} dx$$

$$2) \int \left(\frac{1}{x^{2}}+x\right) dx \qquad 7) \int \frac{x+2}{x^{2}} dx$$

$$3) \int x\sqrt{x^{2}+1} dx \qquad 8) \int \frac{e^{x}}{1+3e^{x}} dx$$

$$4) \int (2t+t^{-1})^{2} dt \qquad 9) \int 3x^{3} \cdot e^{-2x^{4}} dx$$

$$5) \int \sqrt{(z^{2}-z^{-2})^{2}+4} dz \qquad 10) \int 2^{-4x} dx$$

 $\frac{Sol.}{1} - \frac{1}{3x^2} dx = 3 \int x^2 dx = 3 \frac{x^3}{3} + c = x^3 + c$

College of Science Intelligent Medical System Department

$$2) (x^{-2} + x) dx = \int x^{-2} dx + \int x dx = \frac{x^{-1}}{-1} + \frac{x^2}{2} + c = -\frac{1}{x} + \frac{x^2}{2} + c$$

$$3) \int x\sqrt{x^2 + 1} dx = \frac{1}{2} \int 2x(x^2 + 1)^{\frac{1}{2}} dx = \frac{1}{2} \frac{(x^2 + 1)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{1}{3} \sqrt{(x^2 + 1)^3} + c$$

$$4) \int (2t + t^{-1})^2 dt = \int (4t^2 + 4 + t^{-2}) dt = 4\frac{t^3}{3} + 4t + \frac{t^{-1}}{-1} + c = \frac{4}{3}t^3 + 4t - \frac{1}{t} + c$$

$$5) \int \sqrt{(z^2 - z^{-2})^2 + 4} dz = \int \sqrt{z^4 - 2 + z^{-4}} + 4 dz = \int \sqrt{z^4 + 2 + z^{-4}} dz$$

$$= \int \sqrt{(z^2 + z^{-2})^2} dz = \int (z^2 + z^{-2}) dz = \frac{z^3}{3} + \frac{z^{-1}}{-1} + c = \frac{1}{3}z^3 - \frac{1}{z} + c$$

$$6) \int \frac{x + 3}{\sqrt{x^2 + 6x}} dx = \frac{1}{2} \int (2x + 6) \cdot (x^2 + 6x)^{-\frac{1}{2}} dx$$

$$= \frac{1}{2} \cdot \frac{(x^2 + 6x)^{\frac{1}{2}}}{\frac{1}{2}} + c = \sqrt{x^2 + 6x} + c$$

$$7) \int \frac{x + 2}{x^2} dx = \int \left(\frac{x}{x^2} + \frac{2}{x^2}\right) dx = \int (x^{-1} + 2x^{-2}) dx = \ln x + \frac{2x^{-1}}{-1} + c = \ln x - \frac{2}{x} + c$$

$$8) \int \frac{e^x}{1 + 3e^x} dx = \frac{1}{3} \int 3e^x (1 + 3e^x)^{-1} dx = \frac{1}{3} \ln(1 + 3e^x) + c$$

$$9) \int 3x^3 \cdot e^{-2x^4} dx = -\frac{3}{8} \int -8x^3 \cdot e^{-2x^4} dx = -\frac{3}{8} \cdot e^{-2x^4} + c$$

$$10) \int 2^{-4x} dx = -\frac{1}{4} \int 2^{-4x} \cdot (-4dx) = -\frac{1}{4} \cdot 2^{-4x} \cdot \frac{1}{\ln 2} + c$$

2. Integrals of trigonometric functions:

The integration formulas for the trigonometric functions are:

6) $\int \sin u \cdot du = -\cos u + c$ 7) $\int \cos u \cdot du = \sin u + c$ 8) $\int \tan u \cdot du = -\ln|\cos u| + c$ 9) $\int \cot u \cdot du = \ln|\sin u| + c$

College of Science Intelligent Medical System Department

 $10) \int \sec u \cdot du = \ln |\sec u + \tan u| + c \qquad 11) \int \csc u \cdot du = -\ln |\csc u + \cot u| + c$ $12) \int \sec^2 u \cdot du = \tan u + c \qquad 13) \int \csc^2 u \cdot du = -\cot u + c$ $14) \int \sec u \cdot \tan u \cdot du = \sec u + c \qquad 15) \int \csc u \cdot \cot u \cdot du = -\csc u + c$

Example 2: Evaluate the following integrals:

1) $\int \cos(3\theta - 1)d\theta$ 2) $\int x \cdot \sin(2x^2) dx$ 3) $\int \cos^2(2y) \cdot \sin(2y) dy$ 4) $\int \sec^3 x \cdot \tan x \, dx$ 5) $\int \sqrt{2 + \sin 3t} \cdot \cos 3t \, dt$ 6) $\int \frac{d\theta}{\cos^2 \theta}$ 7) $\int (1 - \sin^2 3t) \cdot \cos 3t \, dt$ 8) $\int \tan^3(5x) \cdot \sec^2(5x) \, dx$ 9) $\int \sin^4 x \cdot \cos^3 x \, dx$ 10) $\int \frac{\cot^2 \sqrt{x}}{\sqrt{x}} \, dx$

Solution:

$$1) \frac{1}{3} \int 3\cos(3\theta - 1)d\theta = \frac{1}{3}\sin(3\theta - 1) + c$$

$$2) \frac{1}{4} \int 4x \cdot \sin(2x^2) dx = -\frac{1}{4}\cos(2x^2) + c$$

$$3) -\frac{1}{2} \int (\cos 2y)^2 \cdot (-2\sin 2y \, dy) = -\frac{1}{2} \cdot \frac{(\cos 2y)^3}{3} + c = -\frac{1}{6}(\cos 2y)^3 + c$$

$$4) \int \sec^2 x \cdot (\sec x \cdot \tan x \cdot dx) = \frac{\sec^3 x}{3} + c$$

$$5) \frac{1}{3} \int (2 + \sin 3t)^{\frac{1}{2}} (3\cos 3t \, dt) = \frac{1}{3} \cdot \frac{(2 + \sin 3t)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{2}{9} \sqrt{(2 + \sin 3t)^3} + c$$

College of Science Intelligent Medical System Department

$$6) \int \frac{d\theta}{\cos^2 \theta} = \int \sec^2 \theta \cdot d\theta = \tan \theta + c$$

$$7) \int (1 - \sin^2 3t) \cdot \cos 3t \, dt = \frac{1}{3} \int 3\cos 3t \, dt - \frac{1}{3} \int (\sin 3t)^2 \cdot 3\cos 3t \, dt$$

$$= \frac{1}{3}\sin 3t - \frac{1}{3} \cdot \frac{\sin^3 3t}{3} + c = \frac{1}{3} \cdot \sin 3t - \frac{1}{9}\sin^3 3t + c$$

$$8) \frac{1}{5} \int \tan^3 5x \cdot (5\sec^2 5x \, dx) = \frac{1}{5} \cdot \frac{\tan^4 5x}{4} + c = \frac{1}{20}\tan^4 5x + c$$

$$9) \int \sin^4 x \cdot \cos^3 x \, dx = \int \sin^4 x \cdot (1 - \sin^2 x) \cdot \cos x \, dx$$

$$= \int \sin^4 x \cdot \cos x \, dx - \int \sin^6 x \cdot \cos x \, dx = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + c$$

$$10) \int \frac{\cot^2 \sqrt{x}}{\sqrt{x}} dx = \int \frac{\csc^2 \sqrt{x} - 1}{\sqrt{x}} dx = 2 \int \frac{\csc^2 \sqrt{x}}{2\sqrt{x}} - \int x^{-\frac{1}{2}} dx$$
$$= 2 \left(-\cot \sqrt{x} \right) - \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c = -2 \cot \sqrt{x} - 2\sqrt{x} + c$$

3. Integrals of inverse trigonometric functions:

The integration formulas for the inverse trigonometric functions are:

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + c = -\cos^{-1} \frac{u}{a} + c \quad ; \quad \forall u^2 < a^2$$

$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + c = -\frac{1}{a} \cot^{-1} \frac{u}{a} + c$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + c = -\frac{1}{a} \csc^{-1} \left| \frac{u}{a} \right| + c \quad ; \quad \forall u^2 > a^2$$

College of Science

Intelligent Medical System Department

Example 3: Evaluate the following integrals:

Solution:

1)
$$\frac{1}{3} \int \frac{1}{\sqrt{1 - (x^3)^2}} (3x^2 dx) = \frac{1}{3} \sin^{-1} x^3 + c$$

2) $\int \frac{dx}{\sqrt{9 - x^2}} = \sin^{-1} \frac{x}{3} + c$

$$3) \frac{1}{2} \int \frac{2x}{1+(x^2)^2} dx = \frac{1}{2} \tan^{-1} x^2 + c$$

$$4) \int \frac{\sec^2 x}{\sqrt{1-\tan^2 x}} dx = \sin^{-1}(\tan x) + c$$

$$5) \int \frac{2 dx}{2x\sqrt{(2x)^2 - 1}} = \sec^{-1}(2x) + c$$

College of Science

Intelligent Medical System Department

$$6) \int \frac{2}{\sqrt{x}(1+x)} dx = 4 \int \frac{\sqrt{2}\sqrt{x} dx}{1+(\sqrt{x})^2} = 4 \tan^{-1} \sqrt{x} + c$$

$$7) \frac{1}{\sqrt{3}} \int \frac{\sqrt{3} dx}{1+(\sqrt{3}x)^2} = \frac{1}{\sqrt{3}} \tan^{-1}(\sqrt{3}x) + c$$

$$8) 2 \int \frac{\cos x dx}{1+(\sin x)^2} = 2 \tan^{-1}(\sin x) + c$$

$$9) \int e^{\sin^{-1} x} \cdot \frac{dx}{\sqrt{1-x^2}} = e^{\sin^{-1} x} + c$$

$$10) \int \tan^{-1} x \cdot \frac{dx}{1+x^2} = \frac{(\tan^{-1} x)^2}{2} + c$$

4. Integrals of hyperbolic functions:

The integration formulas for the hyperbolic functions are:

$$19) \int \sinh u \cdot du = \cosh u + c$$

$$20) \int \cosh u \cdot du = \sinh u + c$$

$$21) \int \tanh u \cdot du = \ln(\cosh u) + c$$

$$22) \int \coth u \cdot du = \ln(\sinh u) + c$$

$$23) \int \sec h^2 u \cdot du = \tanh u + c$$

$$24) \int \csc h^2 u \cdot du = \coth u + c$$

$$25) \int \operatorname{sec} hu \cdot \tanh u \cdot du = -\operatorname{sec} hu + c$$

$$26) \int \operatorname{csc} hu \cdot \coth u \cdot du = -\operatorname{csc} hu + c$$

College of Science

Intelligent Medical System Department

Example 4: Evaluate the following integrals:

 $1) \int \frac{\cosh(\ln x)}{x} dx \qquad 6) \int \sec h^2 (2x-3) dx$ $2) \int \sinh(2x+1) dx \qquad 7) \int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$ $3) \int \frac{\sinh x}{\cosh^4 x} dx \qquad 8) \int (e^{ax} - e^{-ax}) dx$ $4) \int x \cdot \cosh(3x^2) dx \qquad 9) \int \frac{\sinh x}{1 + \cosh x} dx$ $5) \int \sinh^4 x \cdot \cosh x dx \qquad 10) \int \operatorname{csch}^2 x \cdot \coth x dx$

Solution:

$$1) \int \cosh(\ln x) \cdot \left(\frac{dx}{x}\right) = \sinh(\ln x) + c$$

$$2) \frac{1}{2} \int \sinh(2x+1) \cdot (2 \, dx) = \frac{1}{2} \cosh(2x+1) + c$$

$$3) \int \frac{1}{\cosh^3 x} \cdot \frac{\sinh x}{\cosh x} \, dx = \int \operatorname{sec} h^3 x \cdot \tanh x \, dx$$

$$= -\int \operatorname{sec} h^2 x \cdot (-\operatorname{sec} hx \cdot \tanh x \, dx) = -\frac{\operatorname{sec} h^3 x}{3} + c$$

$$4) \frac{1}{6} \int \cosh(3x^2) \cdot (6x \, dx) = \frac{1}{6} \sinh(3x^2) + c$$

$$5) \int \sinh^4 x \cdot (\cosh x \, dx) = \frac{\sinh^5 x}{5} + c$$

$$6) \frac{1}{2} \int \operatorname{sec} h^2 (2x-3) \cdot (2 \, dx) = \frac{1}{2} \tanh(2x-3) + c$$

$$7) \int \frac{e^x - e^{-x}}{e^x + e^{-x}} \, dx = \int \tanh x \, dx = \ln(\cosh x) + c$$

$$8) 2\int \frac{e^{ax} - e^{-ax}}{2} \, dx = \frac{2}{a} \int \sinh ax \, (a \, dx) = \frac{2}{a} \cosh ax + c$$

College of Science Intelligent Medical System Department

$$9) \int \frac{\sinh x \, dx}{1 + \cosh x} = \ln(1 + \cosh x) + c$$

$$10) - \int \csc hx \cdot (-\csc hx \cdot \coth x \, dx) = -\frac{\csc h^2 x}{2} + c$$

5. Integrals of inverse hyperbolic functions:

The integration formulas for the inverse hyperbolic functions are:

$$27) \int \frac{du}{\sqrt{1+u^2}} = \sinh^{-1} u + c$$

$$28) \int \frac{du}{\sqrt{u^2 - 1}} = \cosh^{-1} u + c$$

$$29) \int \frac{du}{1-u^2} = \begin{cases} \tanh^{-1} u + c & \text{if } |u| < 1 \\ \coth^{-1} u + c & \text{if } |u| > 1 \end{cases} = \frac{1}{2} \ln \left| \frac{1+u}{1-u} \right| + c$$

$$30) \int \frac{du}{u\sqrt{1-u^2}} = -\sec h^{-1} |u| + c = -\cosh^{-1} \left(\frac{1}{|u|} \right) + c$$

$$31) \int \frac{du}{u\sqrt{1+u^2}} = -\csc h^{-1} |u| + c = -\sinh^{-1} \left(\frac{1}{|u|} \right) + c$$

Example 5: Evaluate the following integrals

1)
$$\int \frac{dx}{\sqrt{1+4x^2}}$$
2)
$$\int \frac{dx}{\sqrt{4+x^2}}$$
3)
$$\int \frac{dx}{1-x^2}$$
4)
$$\int \frac{dx}{x\sqrt{4+x^2}}$$
5)
$$\int \frac{\sec^2\theta \ d\theta}{\sqrt{\tan^2\theta - 1}}$$
6)
$$\int \tanh^{-1}\left(\ln\sqrt{x}\right) \cdot \frac{dx}{x\left(1-\ln^2\sqrt{x}\right)}$$

College of Science

Intelligent Medical System Department

Solution:

1)
$$\frac{1}{2} \int \frac{2 \, dx}{\sqrt{1+4x^2}} = \frac{1}{2} \sinh^{-1} 2x + c$$

2) $\int \frac{\frac{1}{2} \, dx}{\sqrt{1+(x/2)^2}} = \sinh^{-1} \frac{x}{2} + c$
3) $\int \frac{dx}{1-x^2} = \tanh^{-1} x + c \quad \text{if } |x| < 1$
 $= \coth^{-1} x + c \quad \text{if } |x| > 1$

$$4) \int \frac{dx}{x\sqrt{4+x^{2}}} = \frac{1}{2} \int \frac{\frac{1}{2} dx}{\frac{x}{2}\sqrt{1+(x/2)^{2}}} = -\frac{1}{2} \csc h^{-1} |x/2| + c$$

$$5) \int \frac{1}{\sqrt{\tan^{2}\theta - 1}} \left(\sec^{2}\theta \ d\theta\right) = \cosh^{-1}(\tan\theta) + c$$

$$6) \quad let \quad u = \ln\sqrt{x} = \frac{1}{2}\ln x \qquad du = \frac{1}{2x} dx$$

$$\int \tanh^{-1}(\ln\sqrt{x}) \cdot \frac{dx}{x(1-\ln^{2}\sqrt{x})} = \int \tanh^{-1}u \cdot \frac{2 du}{1-u^{2}}$$

$$(x - x - 1 - x)^{2} = x$$

$$= 2 \frac{(tanh^{-1} u)^2}{2} + c = [tanh^{-1} (ln \sqrt{x})]^2 + c$$