L,IIQIIII all o Al’.\

AL MUSTAQBAL UNIVERSITY

Programming Fundamental

Lecture 2
Programming Languages

By

Asst. Lect. Ali Al-khawaja

P

/ A 4 g o
Ol I

E

- -

x B B “ A u "“ bl 7 I B & ¥ I &
yuier r'rograimn
L

» A program is a set of instructions following the rules
of the chosen language.

» Without programs, computers are useless.
» A program is like a recipe.

» It contains a list of ingredients (called variables) and
a list of directions (called statements) that tell the
computer what to do with the variables.

™
1

4
-

LIMImni} nw l.an

l_'J

» A vocabulary and set of grammatical

oJl10
- oL . \E
(c.ﬁ.' l_ ﬂ a q"rca -

 rules (syntax)

for instructing a computer to perform specific tasks.
» Programming languages can be used to create

computer programs.

» The term programming language usually refers to
high-level languages, such as BASIC, C, C++,
COBOL, FORTRAN, Ada, and Pascal.

| B] [) --.*l:,l*1 2% 3 "ﬁq;” JIL a‘lef(F:H‘,E'{F"“
: o <iliiil I.'..L.-'l;m;\ e .[.[;:4}'”_ g 1 ﬁﬁ"

| oereT
\
[
11
PN
A
N
il
=
)

» As human languages are too difficult for a
computer to understand in an unambiguous way,
commands are usually written in one or other
languages specially designed for the purpose.

Programming Language

» You eventually need to convert your program into
machine language so that the computer can
understand it.

» There are two ways to do this:

Compile the program
Interpret the program

\:'b vy

» B i1l ke bhatsel AT ANCTIIDNCTOD

rroeramim 11N L.an ':“%-.LUAQ?J -
- e) 5

» Compile is to transform a program written in a
high-level programming language from source code
into object code.

» This can be done by using a tool called compiler.

« A compiler reads the whole source code and
translates it into a complete machine code program
to perform the required tasks which is output as a
new file.

» Interpreter is a program that executes instructions
written in a high-level language.

» An interpreter reads the source code one instruction
or line at a time, converts this line into machine code
and executes it.

‘!) - X '-~\a- J . B A W -
F1T0°1r'al 7 o - ' Q0o
Programming Language

» Computer programming is the process of writing,
testing, debugging/troubleshooting, and maintaining
the source code of computer programs.

» This source code is written in a programming
language like C++, JAVA, Perl etc.

‘!T' -, . . B O"' . = re B -4 o
- » (5 A B T (; d B / . 4}:\
Programming Language

Common Features of All Program

All programs could be structured in the following four
ways:

» Sequences of instructions

» Branches

* Loops

» Modules

Pr nﬂn’dmmnw Language

Common Features of All Program

Sequences of Instructions

Slep |

The program flows from one
step to the next in strict sequence.

Slep 2

.\" L;v 5

Sep d

Programming Language

Common Features of All Program

r

Branches Siep |

The program reaches a decision

point and if the result of the test is X “ |
true then the program performs |
the instructions in Path 1, and if a2 |

false it performs the actions in ‘
Path 2 :

Programming Language

Common Features of All Program
Loops

The program steps are repeated
continuously until some test condition
is reached, at which point control then
flows past the loop into the next piece of
program logic

). B9 € BB -,'a.:. o 1 "> Eales b BT ¥
rrogramming ﬂL,éﬂlﬂ,g.,bLﬂ.aE;,;ﬁj

Common Features of All Program
Modules

The program performs an identical sequence of actions
several times. For convenience these common actions
are placed in a module, which is a kind of mini-program
which can be executed from within the main program.

Programming Language

Common Features of All Program

Modules \

Shared Module

5 o O
Ll Eﬁﬁ_.

Programming Langu

Common Features of All Program

Along with these structures programs also need a few
more features to make them useful:

» Data (we take a closer look at data in the Raw Materials
topic)

» Operations (add, subtract, compare etc)
» Input/Output capability (e.g. to display results)

-
=
e~
;:.4
\)
P,-J
e
‘-—~l
r \
)c:’x
=
==
)
—\
o/
»i 3: 3
o
=
2
o\
P
=
-
)=
_0
=
=
J=i
[+

« A programmer is someone who writes computer
program.

» Computer programmers write, test, and maintain
programs or software that tell the computer what to

do.

\} Q']-'17 1D s . : R annsyan o Deves o e et e %S
Yvinalt KIS are .t\-i‘(_llzh‘\i.i 1O become a rroerammer.
»

« Programming - Writing computer programs for
various purposes.

« Writing - Communicating effectively with others in
writing as indicated by the needs of the audience.

» Reading Comprehension - Understanding
written sentences and paragraphs in work-related
documents.

» Critical Thinking - Using logic and analysis to
identify the strengths and weaknesses of different
approaches.

‘._¢~ - k].l1: T‘T‘ 3 » '_ ;~c Y .)
A/ 17 9 . N 20 M £ ol . S MY TIYN 8 2 M1y "1 et A
‘-:’.It-;".l\'t':\s.!ﬁ cdll © INK '.Hfﬁx‘\!.i 1O become a i 1O ralinincey .

« Computers and Electronics - Knowledge of
electric circuit boards, processors, chips, and
computer hardware and software, including
applications and programming.

» Mathematics - Knowledge of numbers, their
operations, and interrelationships including
arithmetic, algebra, geometry, calculus, statistics,
and their applications.

» Oral Expression - The ability to communicate
information and ideas in speaking so others will
understand.

» Oral Comprehension - The ability to listen to and
understand information and ideas presented through
spoken words and sentences.

» Written Expression - The ability to communicate
information and ideas in writing so others will
understand.

» Written Comprehension - The ability to read and
understand information and ideas presented in
writing.

Ay aad Q.-J-:17k 2 RVLD {I:J, 3 E<_.‘..'% o B2 vy sy o N !‘;}'.,..,‘. *F TR TN £
YVIildl ORIUS Al'C KCUUITNCU 1O DECOINIC Aa rrogramiancgel

» Deductive Reasoning - The ability to apply
general rules to specific problems to come up with
logical answers. It involves deciding if an answer

makes sense.

» Information Organization - Finding ways to
structure or classify multiple pieces of information.

» The first generation languages, or 1GL, are low-
level languages that are machine language.

» The second generation languages, or 2GL, are
also low-level languages that generally consist of
assembly languages.

» The third generation languages, or 3GL, are
high-level languages such as C.

4 o ¥ K . > 17

| ‘a2 a¥a2y Ll Y 4 . ¥ Ay | "2 FaY "2 12 B & 23232 3% 'S] g 2o Rt ar e

UCINCIrdUIONS O y Ir'ogr4damnmiming s.anZuagc
<) <’ <> <’

N

» The fourth generation languages, or 4GL, are
languages that consist of statements similar to
statements in a human language. Fourth generation
languages are commonly wused in database
programming and scripts.

» The fifth generation languages, or 5GL, are
programming languages that contain visual tools to
help develop a program. A good example of a fifth
generation language is Visual Basic.

Types of Programming Language

()

\-/,/y

——

 There are three types of programming language:
o Machine language (Low-level language)
~ Assembly language (Low-level language)
~ High-level language

» Low-level languages are closer to the language used
by a computer, while high-level languages are closer
to human languages.

e O ATRACTIL N CTO
| & f‘_f. ﬂ . 1% Ll ‘lq,, -
O e o Roiocaper” o Lom

Machine Language

» Machine language is a collection of binary digits or
bits that the computer reads and interprets.

» Machine languages are the only languages
understood by computers.

» While easily understood by computers, machine
languages are almost impossible for humans to use
because they consist entirely of numbers.

Machine Language

Machine Language

1691160 0 153 0 128 153 0 129 153 130 153 0 131
200 208 241 96

High level language
5 FOR I=1 TO 1000: PRINT "A";: NEXT I

3 L - D N e e o A AR A A “ P T —
1ypes o1 rrogramming i.anguage
o | > S o«

-

Machine Language

Example:

» Let us say that an electric toothbrush has a processor
and main memory.

» The processor can rotate the bristles left and right,
and can check the on/off switch.

» The machine instructions are one byte long, and
correspond to the following machine operations:

Types of Programming Language

Machine Language
Machine Instruction Machine Operation
0000 0000 Stop
0000 0001 Rotate bristles left
0000 0010 Rotate bristles right
0000 0100 Go back to start of program
0000 1000 Skip next instruction if switch is off

Ing Language

=3 <)

Assembly Language

» A program written in assembly language consists of a
series of instructions mnemonics that correspond to
a stream of executable instructions, when translated
by an assembler, that can be loaded into memory
and executed.

» Assembly languages use keywords and symbols,
much like English, to form a programming language
but at the same time introduce a new problem.

BRa Xt d‘]"" 'S B B> ¥ £
| B Hglc; 1N UASC
" <) x

Assembly Language

» The problem is that the computer doesn't
understand the assembly code, so we need a way to
convert it to machine code, which the computer does
understand.

» Assembly language programs are translated into
machine language by a program called an
assembler.

Types of Programming Language

High Level Language

» High-level languages allow us to write computer code
using instructions resembling everyday spoken language
(for example: print, if, while) which are then
translated into machine language to be executed.

» Programs written in a high-level language need to be
translated into machine language before they can be
executed.

» Some programming languages use a compiler to
perform this translation and others use an interpreter.

Language

AImnming

&b
Q
o
&
o
o
)]
W

Choosing a Programming Language

Before you decide on what language to use, you should
consider the following:

» your server platform

» the server software you run

» your budget

 previous experience in programming

» the database you have chosen for your backend

The Programming Process

Step 1: Defining the problem.
Step 2: Planning the solution.
Step 3: Code the program.
Step 4: Test the program.
Step 5: Document everything.

The Programming Process

Step 1: Defining the problem

» The task of defining the problem consists of identifying
what it is you know (input-given data), and what it is you
want to obtain (output-the result).

« Eventually, you produce a written agreement that, among
other things, specifies the kind of input, processing, and
output required.

The Programming Process
®
‘&__.z)

Step 1: Defining the problem
Example:

» What must the program do?
» What outputs are required and in what form?
» What inputs are available and in what form?

o I

The Programming Process

Step 2: Planning the solution

» Two common ways of planning the solution to a problem
are to draw a flowchart and to write pseudocode, or
possibly both.

« A flowchart is a pictorial representation of a step-by-step
solution to a problem.

» It consists of arrows representing the direction the program
takes and boxes and other symbols representing actions.

» It is a map of what your program is going to do and how it
is going to do it.

The Progr zmmi ng Process

Step 2: Planning the solution

» Pseudocode is an English-like nonstandard language that
lets you state your solution with more precision than you
can in plain English but with less precision than is required
when using a formal programming language.

» Pseudocode permits you to focus on the program logic
without having to be concerned just yet about the precise
syntax of a particular programming language.

The Proeramming Process
7 <>

Step 3: Code the program

» You will translate the logic from the flowchart or
pseudocode-or some other tool-to a programming
language.

» Program Coding means expressing the algorithm developed
for solving a problem, in a programming language.

The Programming Process

Step 4: Test the program

» Almost all programs may contain a few errors, or bugs.

» Testing is necessary to find out if the program produces a
correct result.

» Usually it is performed with sample data
» Debugging is the process of locating and removing errors

The Programming Process
Step 4: Test the program

Types of Error

Syntax Errors: Violation of syntactic rules in a
Programming Language generates syntax errors.

Effect? Interpreter or Compiler finds it in Syntax Check
Phase.

The Programming Process

Step 4: Test the program
Types of Error

Semantic Errors: Doing logical mistakes causes
semantic errors in Source code.

Effect? Interpreters and Compilers can not notice them,
but on execution, they causes unexpected results.

The Programming Process

Step 4: Test the program
Types of Error

Run-time Errors: Occur on program execution. Mostly
caused by invalid data entry or tries to use not existing
resources.

Effect? It occurs on run time and may crash the
program execution

The Programming Process

Step 5: Document everything

» Documentation is a written detailed description of the
programming cycle and specific facts about the program.

» Typical program documentation materials include the
origin and nature of the problem, a brief narrative
description of the program, logic tools such as flowcharts
and pseudocode, data-record descriptions, program
listings, and testing results.

» Comments in the program itself are also considered an
essential part of documentation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

