Bidentate Ligands

- Two possible sites of attachment
- Two Lewis base sites that can attach to M^{n+}
- Part of larger class of chelate

Important Polydentate Ligands

Structure of EDTA Ligand and Complex

- H₄EDTA common polydentate ligand
- EDTA⁴⁻ used to complex metal ions
 - 6 donor atoms
 - Wraps around metal ion
 - Forms very stable complexes

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

$$\begin{array}{c} : O: \\ \vdots \ddot{O} - C - CH_2 \\ \ddot{\ddot{N}} - CH_2 - CH_2 - \ddot{\ddot{N}} \\ \vdots \ddot{\ddot{O}} - C - CH_2 \\ \vdots \ddot{\ddot{O}} = C - CH_2 \\ \ddot{\ddot{O$$

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Formulas of Complex Ions

- 1. The symbol for the metal ion is always given first, followed by ligands. $[Cu(NH_3)_4]^{2+}$ $[Cr(H_2O)_4(NH_3)]^{+2}$
- 2. When more than one kind of ligand is present,
 - **A. Anionic ligands** are first (in alphabetical order)
 - B. Neutral ligands are next (in alphabetical order)
- 3. Charge on complex is algebraic sum of charge on metal ion and charges on ligands
- 4. The formula is placed inside of square brackets with the charge of the complex as a superscript outside the brackets, if it is not zero.

Formulas of Complex Ions

 $[Cu(NH_3)_4]^{2+} [Cr(H_2O)_4(NH_3)]^{2+}$

- 1. What is the formula for the complex made by Cu²+ and four ammonia (NH³) molecules? Decide if the complex could be isolated as a chloride salt or a potassium salt. Write the formula of the appropriate salt.
 - Cu²⁺ has +2 charge
 - NH₃ is neutral
 - So overall charge of ion is +2 + 4(0) = +2
- $[Cu(NH_3)_4]^{2+}$
 - Need two Cl⁻ to make neutral complex
- [Cu(NH₃)₄]Cl₂

Learning Check

- 2. What is the formula for the complex made by Ag⁺ and two cyanide (CN⁻) ions? Decide if the complex could be isolated as a chloride salt or a potassium salt. Write the formula of the appropriate salt.
 - CN⁻ is negative one charge
 - So overall charge of ion is +1 + 2(-1) = -1
- $[Ag(CN)_2]^-$
 - Need +1 to make neutral complex
 - So add one K⁺ ion
- $K[Ag(CN)_2]$

Coordination Number

- Number of bonds formed by metal ions to ligands in complex ions
- Varies from 2 to 8
- Depends on:
 - Size of central atom
 - 2. Steric interactions of ligands
 - 3. Electrostatic interactions

e.g.
$$[Co(NH_3)_6]^{3+}$$
 $CN = 6$ $[PtCl_4]^{2-}$ $CN = 4$ $Ni(CO)_4$ $CN = 4$

4 and 6 most common

Some Common Coordination Numbers of Metal Ions

Table 22.2 Some Common Coordination Numbers of Metal Ions

Metal Ion	Coordination Number
Al^{3+}	4, 6
Sc^{3+}	6
Ti ⁴⁺	6
V^{3+}	6
Cr ³⁺	6
Mn^{2+}	6
Fe ²⁺	6
Fe ³⁺	6
Co ²⁺	4, 6
Co ³⁺	6

Metal Ion	Coordination Number
Ni ²⁺	4, 6
Cu ⁺	2, 4
Cu ²⁺	4, 6
Zn^{2+}	4
Pd^{2+}	4
Ag ⁺	2
Pt ²⁺	4
Pt ⁴⁺	6
Au ⁺	2, 4
Au ³⁺	4

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Molecular Geometry

on Geometrics of Comp	olex lons	
Shape	Model	Example
Linear		$\left[{\rm Ag(NH_3)_2}\right]^+$
Square planar		$[PdCl_4]^{2-}$
Tetrahedral		$[Zn(NH_3)_4]^{2+}$
Octahedral		$[{\rm Fe}({\rm H_2O})_6]^{3+}$
	Shape Linear Square planar Tetrahedral	Square planar Tetrahedral

Structures

ML, Linear

$$[H_3N-Ag-NH_3]^+$$

 $[NC-Ag-CN]^-$

 $= 6 ML_6$ Octahedral

Structures

ML_4 Tetrahedral

*ML*₄ Square Planar

- Cation (PART) named first, then anion (PART)
- 2. Ordering of ligands $K[Ag(CN)_2]$ $[Cu(NH_3)_4]CI_2$
 - In formula, symbol of metal first followed by ligandsLigands order
 - I. Anionic ligands first in alphabetical order
 - Neutral ligands next also in alphabetical order
 - **b. In the name** of the complex,
 - Ligands named first in alphabetical order without regard to charge
 - II. Metal named last

 $K_3[Fe(CN)_6] \rightarrow \text{potassium hexacyano} ferrate(III)$ $[Co(H_2O)_6]^{2+}SO_4 \rightarrow \text{Hexaaquacobalt}(II) \text{ sulphate}$

IUPAC Rules for naming Coordination Compounds

- 3. Names of anionic ligands always end in suffix –o
 - Ligands whose names end in -ide have suffix changed to
 -o

K₃[Fe(CN)₆] → potassium hexa**cyano**ferrate(III)

 $[Co(H_2O)_6]^{2+}SO_4 \rightarrow Hexaaquacobalt(II) sulphate$

Anion		Ligand
chloride	Cl-	chloro-
bromide	Br ⁻	bromo-
cyanide	CN-	cyano-
oxide	O^{2-}	oxo-

Convright © 2012 John Wiley & Sons, Inc. All rights reserve

Rules for naming Coordination Compounds

b) Ligands whose names end in *-ite* or *-ate* become *-ito* and *-ato* respectively

Anion		Ligand
carbonate	CO_3^{2-}	carbonato-
thiosulfate	$S_2O_3^{2-}$	thiosulfato-
thiocyanate	SCN-	thiocyanato- (when bonded through sulfur)
		isothiocyanato- (when bonded through nitrogen)
oxalate	$C_2O_4^{2-}$	oxalato-
nitrite	NO_2^-	nitrito- (when bonded through oxygen; written
		ONO in the formula for the complex) ^a

^aAn exception to this is when the nitrogen of the NO_2^- ion is bonded to the metal, in which case the ligand is named nitro-.

- 4. Neutral ligands given same name as used for molecule except:
 - H₂O aqua NH₃ ammine
- 5. When there is more than one of a given ligand, specify number of ligands by prefixes.

Number of same ligand	Simple ligand prefix	Complicated ligand prefix
2	di-	bis-
3	tri-	tris-
4	tetra-	tetrakis-
5	penta-	
6	hexa-	

Nomenclature

6. If the complex ion has a negative charge, the suffix – *ate* is added to the name of the metal.

Metal	As Named in Anionic Complex	
Aluminum	Aluminate	
Chromium	Chromate	
Manganese	Manganate	
Nickel	Nickelate	
Cobalt	Cobaltate	
Zinc	Zincate	
Platinum	Platinate	
Vanadium	Vanadate	

Latin Names of Metals

7. Sometimes the Latin name of the metal is used.

Metal	Stem	Metal as Named in an Anionic Complex
iron	ferr-	ferrate
copper	cupr-	cuprate
lead	plumb-	plumbate
silver	argent-	argentate
gold	aur-	aurate
tin	stann-	stannate

8. Oxidation state of the metal is designated by Roman numeral in parentheses

Name the Following:

- $[Ag(CN)_2]^-$
- dicyanoargentate(I) ion
- $[Zn(OH)_4]^{2-}$
- tetrahydroxozincate(II) ion
- $[Co(NH_3)_6]^{3+}$
- hexamminecobalt(III) ion
- $[Mn(en)_3]Cl_2$
- tris(ethylenediamine)manganese(II) chloride