Transition Metals and d-Block Metal Chemistry ### Transition Metals (d block elements) | Period Не 10 Transition Metals (d-block) 13 18 TI Cr Mn Co Ni Zn 42 43 50 82 86 104 105 106 107 109 110 111 Mt Ds Rg 112 113 What are d-block metals? The elements in groups 3–12 are defined as the so-called d-block metals. Incomplete filled d orbitals Transition metal: d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states → therefore, the group 12 metals zinc (Zn), cadmium (Cd) and mercury (Hg) are not typically classified as transition metals Sc not transition elements. •Sc \rightarrow Sc³⁺- (empty d orbital) $4s^23d^1$ $4s^03d^0$ Zn not transition elements. •Zn \rightarrow Zn²⁺- (fully filled d orbital) $4s^23d^{10}$ $4s^03d^{10}$ ### Transition Metals · d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states ### Formation complex ions # [Cu(NH₃)₄]²⁺ http://www.dlt.ncssm.edu/tiger/chem8.htm # **Properties of Transition metals** - Formation of complex ions - Formation coloured complexes - Variable oxidation states - Catalytic activity ## Formation coloured complexes http://www.chemquide.co.uk/inorganic/transition/features.htm # Catalytic activity # Catalyst -speed up reaction by lower Ea Catalyst surface - molecule adsorp on it bond making and breaking is easier Sci-Media/Images/Catalytic-converter-catalyst ### Variable Oxidation states | | | +7 Variable oxidation | | | | | state | | | |------------|------------|---------------------------------|------------|------------|------------|------------|-----------|--|--| | | | <u>+6</u> | +6 | +6 | | | | | | | | <u>+5</u> | +5 | +5 | +5 | +5 | | | | | | <u>+4</u> | +4 | +4 | <u>+4</u> | +4 | +4 | +4 | | | | | <u>+3</u> | <u>+3</u> | <u>+3</u> | +3 | <u>+3</u> | <u>+3</u> | +3 | +3 | | | | +2 | +2 | +2 | <u>+2</u> | <u>+2</u> | <u>+2</u> | <u>+2</u> | <u>+2</u> | | | | | | | | | | | <u>+1</u> | | | | Ti | ٧ | Cr | Mn | Fe | Co | Ni | Cu | | | | [Ar] | | | $3d^24s^2$ | $3d^34s^2$ | 3d ⁵ 4s ¹ | $3d^54s^2$ | $3d^64s^2$ | $3d^74s^2$ | $3d^84s^2$ | 3d104s1 | | | http://elementalolympics.wordpress.com/2011/02/28/variable-oxidation-states-and-catalysts/ # Transition Metals (d block elements) - Variable Oxidation States | Sc | Ti | V | Cr
4s ¹ 3d ⁵ | Mn | Fe | Co | Ni | Cu | Zn | |---------------------------------|------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|------------|---------------------------------|----------------------------------|----------------------------------| | 4s ² 3d ¹ | $4s^23d^2$ | 4s ² 3d ³ | 4s13d5 | 4s ² 3d ⁵ | 4s ² 3d ⁶ | $4s^23d^7$ | 4s ² 3d ⁸ | 4s ¹ 3d ¹⁰ | 4s ² 3d ¹⁰ | Oxidation state +2 more common on right ($Co \rightarrow Zn$) - Harder to lose electron as Nuclear charge of Co Zn is getting higher (NC \uparrow) Oxidation state +3 more common on left (Sc \rightarrow Fe) - Easier to lose electron as Nuclear charge of Sc Fe is lower (NC ↓) Oxidation state for Mn is highest +7 Higher oxidation state exist when elements bond to oxygen oxides/oxyanions | | | | | (MnO ₄)- | | | | | | | |-------------------|-------------------|--|--|---|---|--|-------------------------------|--|--|--| | | | | Cr ₂ O ₇ | (MnO ₄) ²⁻ | | | | | | oxides
oxyani | | | | V_2O_5 | | | | | | | | | | | TiCl ₄ | (VO ₂) ²⁺ | | MnCl ₄ | | | | | | | | ScCl ₃ | TiCl ₃ | VCI ₃ | CrCl ₃ | MnCl ₃ | FeCI ₃ | | | | | chlori | | | | | CrCl ₂ | MnCl ₂ | FeCl ₂ | CoCl ₂ | NiCl ₂ | CuCl ₂ | ZnCl ₂ | | | | | | | +7 | | | | | | | | | | | +6 | +6 | | | | | | | | | +4 | +5 | | +4 | | | | | | | | +3 | +3 | +3 | +3 | +3 | +3 | | | | | | | | | | +2 | +2 | +2 | +2 | +2 | +2 | +2 | | | Sc 4-22-41 | Ti | V | Cr | Mn | Fe | Co | Ni
4-22-48 | Cu | Zn 4-22-110 | | | | +3 | ScCl ₃ TiCl ₃ +4 +3 +3 | ScCl ₃ TiCl ₄ (VO ₂) ²⁺ VCl ₃ +5 +4 +3 +3 +3 | V ₂ O ₅ TiCl ₄ | V2O5 MnCl4 ScCl3 TiCl3 VCl3 CrCl3 MnCl3 CrCl2 MnCl2 +7 +4 +5 +4 +3 +3 +3 +3 +2 +2 | V2O5 MnCl4 ScCl3 TiCl3 VCl3 CrCl3 MnCl3 FeCl3 CrCl2 MnCl2 FeCl2 +4 +5 +4 +4 +3 +3 +3 +3 +3 +2 +2 +2 Sc Ti V Cr Mn Fe | V ₂ O ₅ | V2O5 MnCI4 ScCI3 TiCI4 (VO2)2+ MnCI3 FeCI3 CrCI2 MnCI2 FeCI2 CoCI2 NiCI2 +7 +6 +6 +4 +4 +4 +3 +3 +3 +3 +3 +3 +2 +2 +2 +2 +2 Sc Ti V Cr Mn Fe Co Ni | V2O5 MnCI4 ScCI3 TiCI4 (VO2)2+ MnCI3 FeCI3 CrCI2 MnCI2 FeCI2 CoCI2 NiCI2 CuCI2 +4 +5 +4 +4 +4 +4 +4 +4 +2 <td>ScCl₃ TiCl₄ (VO₂)²⁺ VCl₃ MnCl₄ FeCl₃ FeCl₃ FeCl₃ CrCl₂ MnCl₂ FeCl₂ CoCl₂ NiCl₂ NiCl₂ CuCl₂ ZnCl₂ +4 +5 +4 +4 +4 +4 +4 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 -2</td> | ScCl ₃ TiCl ₄ (VO ₂) ²⁺ VCl ₃ MnCl ₄ FeCl ₃ FeCl ₃ FeCl ₃ CrCl ₂ MnCl ₂ FeCl ₂ CoCl ₂ NiCl ₂ NiCl ₂ CuCl ₂ ZnCl ₂ +4 +5 +4 +4 +4 +4 +4 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 -2 | # Transition Metals (d block elements) - Variable Oxidation States | Sc | Ti | V | Cr
4s ¹ 3d ⁵ | Mn | Fe | Co | Ni | Cu | Zn | |---------------------------------|------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|------------|---------------------------------|----------------------------------|----------------------------------| | 4s ² 3d ¹ | $4s^23d^2$ | 4s ² 3d ³ | 4s13d5 | 4s ² 3d ⁵ | 4s ² 3d ⁶ | $4s^23d^7$ | 4s ² 3d ⁸ | 4s ¹ 3d ¹⁰ | 4s ² 3d ¹⁰ | Oxidation state +2 more common on right (Co → Zn) - Harder to lose electron as Nuclear charge of Co Zn is getting higher (NC \uparrow) Oxidation state +3 more common on left (Sc \rightarrow Fe) - Easier to lose electron as Nuclear charge of Sc Fe is lower (NC ↓) Oxidation state for Mn is highest +7 Higher oxidation state exist when elements bond to oxygen oxides/oxyanions | +7 | | | | | (MnO ₄)- | | | | | | | |----|---------------------------------|---------------------------------|----------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|------------------| | +6 | | | | Cr ₂ O ₇ | (MnO ₄) ²⁻ | | | | | | oxides
oxyani | | +5 | | | V_2O_5 | | | | | | | | Oxyamic | | +4 | | TiCl ₄ | (VO ₂) ²⁺ | | MnCl ₄ | | | | | | | | +3 | ScCl ₃ | TiCl ₃ | VCI ₃ | CrCl ₃ | MnCl ₃ | FeCI ₃ | | | | | chloric | | +2 | | | | CrCl ₂ | MnCl ₂ | FeCl ₂ | CoCl ₂ | NiCl ₂ | CuCl ₂ | ZnCl ₂ | | | | | | creases | | +7 | | | | | | | | | | dation num | per increases
+5 | +6 | +6 | | | | | | | | | OX | +4 | +5 | | +4 | | | | | | | | | +3 | +3 | +3 | +3 | +3 | +3 | | | | | | | | | | | +2 | +2 | +2 | +2 | +2 | +2 | +2 | | | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | | | | 4s ² 3d ¹ | 4s ² 3d ² | 4s ² 3d ³ | 4s ¹ 3d ⁵ | 4s ² 3d ⁵ | 4s ² 3d ⁶ | 4s ² 3d ⁷ | 4s ² 3d ⁸ | 4s ¹ 3d ¹⁰ | 4s ² 3d ¹⁰ | | # Transition Metal Complexes # Ligands - Neutral molecules or ions that have lone pair of electrons that can be used to form bond to metal - Lewis base = electron pair donor # Metal - Lewis Acid = electron pair acceptor - Can accept more than one Ligand (Lewis base) # M—L bond - Coordinate covalent bond - Lewis acid base adduct formation # Transition Metal Complexes # **Coordinate Covalent Bond** Both electrons in shared pair come from same atom # **Coordination Complexes** - Central metal atom surrounded by set of ligands - Complex ion: $[Co(NH_3)_6]^{3+}$, $[PtCl_4]^{2-}$ # Transition Metals (d block elements) – Formation Complex lons **Transition Metal ion** + **Ligands** = **Complex Ions** ### **Transition Metal ion** - High charged density metal ion, partially filled 3d orbital - Attract ligand (neutral, anion with lone pair electron) - Form coordinate covalent bond lone pair from ligands ### Ligands - Neutral/anion species that donate lone pair/non bonding electron pair to metal ion (complexing agents) - Lewis base, lone pair donor dative bond with metal ion - Coordination number number of ligands around central ion # Transition Metals (d block elements) - Formation Complex Ions **Transition Metal ion** + **Ligands** = **Complex Ions** ### **Transition Metal ion** - High charged density metal ion, partially filled 3d orbital - Attract ligand (neutral, anion with lone pair electron) - Form coordinate covalent bond lone pair from ligands ### Ligands - Neutral/anion species that donate lone pair/non bonding electron pair to metal ion (complexing agents) - Lewis base, lone pair donor dative bond with metal ion - Coordination number number of ligands around central ion **Coordination complexes**: chemical structures that consist of a metal ion and the surrounding molecules or anions called the ligands. **Coordination compounds**: are neutral compounds that contain a coordination complex. **Coordination number**: maximum number of ligands can be accommodated by the metal ion, and is a property of the metal and its associated ligand. # Transition Metals (d block elements) - Formation Complex Ions **Transition Metal ion** + **Ligands** = **Complex Ions** ### **Transition Metal ion** - High charged density metal ion, partially filled 3d orbital - Attract ligand (neutral, anion with lone pair electron) - Form coordinate covalent bond lone pair from ligands ## Ligands - Neutral/anion species that donate lone pair/non bonding electron pair to metal ion (complexing agents) - Lewis base, lone pair donor dative bond with metal ion - Coordination number number of ligands around central ion # Common Ligands - 1. Monodentate $M \leftarrow : L$ - 1 donor atom - 1 Ione pair - 1 bond to metal # **Anions** # **Molecules** H₂O, NH₃, CO # Common Ligands # 2. Chelate or Polydentate Ligands - Have two or more atoms on one molecule with lone pairs - Each of which can simultaneously form 2 e bonds to M¹⁺ - Usually 5 or 6-membered rings with M - Sometimes form 4-membered rings - Must be nonlinear molecules