Transition Metals and d-Block Metal Chemistry

Transition Metals (d block elements) | Period Не 10 Transition Metals (d-block) 13 18 TI Cr Mn Co Ni Zn 42 43 50 82 86 104 105 106 107 109 110 111 Mt Ds Rg 112 113

What are d-block metals?

The elements in groups 3–12 are defined as the so-called d-block metals.

Incomplete filled d orbitals

Transition metal: d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states → therefore, the group 12 metals zinc (Zn), cadmium (Cd) and mercury (Hg) are not typically classified as transition metals

Sc not transition elements. •Sc \rightarrow Sc³⁺- (empty d orbital) $4s^23d^1$ $4s^03d^0$ Zn not transition elements. •Zn \rightarrow Zn²⁺- (fully filled d orbital) $4s^23d^{10}$ $4s^03d^{10}$

Transition Metals

· d block elements with half/partially filled d orbitals/sublevels in one or more of its oxidation states

Formation complex ions

[Cu(NH₃)₄]²⁺

http://www.dlt.ncssm.edu/tiger/chem8.htm

Properties of Transition metals

- Formation of complex ions
- Formation coloured complexes
- Variable oxidation states
- Catalytic activity

Formation coloured complexes

http://www.chemquide.co.uk/inorganic/transition/features.htm

Catalytic activity

Catalyst -speed up reaction by lower Ea

Catalyst surface - molecule adsorp on it bond making and breaking is easier

Sci-Media/Images/Catalytic-converter-catalyst

Variable Oxidation states

		+7 Variable oxidation					state		
		<u>+6</u>	+6	+6					
	<u>+5</u>	+5	+5	+5	+5				
<u>+4</u>	+4	+4	<u>+4</u>	+4	+4	+4			
<u>+3</u>	<u>+3</u>	<u>+3</u>	+3	<u>+3</u>	<u>+3</u>	+3	+3		
+2	+2	+2	<u>+2</u>	<u>+2</u>	<u>+2</u>	<u>+2</u>	<u>+2</u>		
							<u>+1</u>		
Ti	٧	Cr	Mn	Fe	Co	Ni	Cu		
[Ar]	[Ar]	[Ar]	[Ar]	[Ar]	[Ar]	[Ar]	[Ar]		
$3d^24s^2$	$3d^34s^2$	3d ⁵ 4s ¹	$3d^54s^2$	$3d^64s^2$	$3d^74s^2$	$3d^84s^2$	3d104s1		

http://elementalolympics.wordpress.com/2011/02/28/variable-oxidation-states-and-catalysts/

Transition Metals (d block elements) - Variable Oxidation States

Sc	Ti	V	Cr 4s ¹ 3d ⁵	Mn	Fe	Co	Ni	Cu	Zn
4s ² 3d ¹	$4s^23d^2$	4s ² 3d ³	4s13d5	4s ² 3d ⁵	4s ² 3d ⁶	$4s^23d^7$	4s ² 3d ⁸	4s ¹ 3d ¹⁰	4s ² 3d ¹⁰

Oxidation state +2 more common on right ($Co \rightarrow Zn$)

- Harder to lose electron as Nuclear charge of Co Zn is getting higher (NC \uparrow) Oxidation state +3 more common on left (Sc \rightarrow Fe)
- Easier to lose electron as Nuclear charge of Sc Fe is lower (NC ↓)

 Oxidation state for Mn is highest +7

 Higher oxidation state exist when elements bond to oxygen oxides/oxyanions

				(MnO ₄)-						
			Cr ₂ O ₇	(MnO ₄) ²⁻						oxides oxyani
		V_2O_5								
	TiCl ₄	(VO ₂) ²⁺		MnCl ₄						
ScCl ₃	TiCl ₃	VCI ₃	CrCl ₃	MnCl ₃	FeCI ₃					chlori
			CrCl ₂	MnCl ₂	FeCl ₂	CoCl ₂	NiCl ₂	CuCl ₂	ZnCl ₂	
				+7						
			+6	+6						
	+4	+5		+4						
+3	+3	+3	+3	+3	+3					
			+2	+2	+2	+2	+2	+2	+2	
Sc 4-22-41	Ti	V	Cr	Mn	Fe	Co	Ni 4-22-48	Cu	Zn 4-22-110	
	+3	ScCl ₃ TiCl ₃ +4 +3 +3	ScCl ₃ TiCl ₄ (VO ₂) ²⁺ VCl ₃ +5 +4 +3 +3 +3	V ₂ O ₅ TiCl ₄	V2O5 MnCl4 ScCl3 TiCl3 VCl3 CrCl3 MnCl3 CrCl2 MnCl2 +7 +4 +5 +4 +3 +3 +3 +3 +2 +2	V2O5 MnCl4 ScCl3 TiCl3 VCl3 CrCl3 MnCl3 FeCl3 CrCl2 MnCl2 FeCl2 +4 +5 +4 +4 +3 +3 +3 +3 +3 +2 +2 +2 Sc Ti V Cr Mn Fe	V ₂ O ₅	V2O5 MnCI4 ScCI3 TiCI4 (VO2)2+ MnCI3 FeCI3 CrCI2 MnCI2 FeCI2 CoCI2 NiCI2 +7 +6 +6 +4 +4 +4 +3 +3 +3 +3 +3 +3 +2 +2 +2 +2 +2 Sc Ti V Cr Mn Fe Co Ni	V2O5 MnCI4 ScCI3 TiCI4 (VO2)2+ MnCI3 FeCI3 CrCI2 MnCI2 FeCI2 CoCI2 NiCI2 CuCI2 +4 +5 +4 +4 +4 +4 +4 +4 +2 <td>ScCl₃ TiCl₄ (VO₂)²⁺ VCl₃ MnCl₄ FeCl₃ FeCl₃ FeCl₃ CrCl₂ MnCl₂ FeCl₂ CoCl₂ NiCl₂ NiCl₂ CuCl₂ ZnCl₂ +4 +5 +4 +4 +4 +4 +4 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 -2</td>	ScCl ₃ TiCl ₄ (VO ₂) ²⁺ VCl ₃ MnCl ₄ FeCl ₃ FeCl ₃ FeCl ₃ CrCl ₂ MnCl ₂ FeCl ₂ CoCl ₂ NiCl ₂ NiCl ₂ CuCl ₂ ZnCl ₂ +4 +5 +4 +4 +4 +4 +4 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 -2

Transition Metals (d block elements) - Variable Oxidation States

Sc	Ti	V	Cr 4s ¹ 3d ⁵	Mn	Fe	Co	Ni	Cu	Zn
4s ² 3d ¹	$4s^23d^2$	4s ² 3d ³	4s13d5	4s ² 3d ⁵	4s ² 3d ⁶	$4s^23d^7$	4s ² 3d ⁸	4s ¹ 3d ¹⁰	4s ² 3d ¹⁰

Oxidation state +2 more common on right (Co → Zn)

- Harder to lose electron as Nuclear charge of Co Zn is getting higher (NC \uparrow) Oxidation state +3 more common on left (Sc \rightarrow Fe)
- Easier to lose electron as Nuclear charge of Sc Fe is lower (NC ↓)

 Oxidation state for Mn is highest +7

 Higher oxidation state exist when elements bond to oxygen oxides/oxyanions

+7					(MnO ₄)-						
+6				Cr ₂ O ₇	(MnO ₄) ²⁻						oxides oxyani
+5			V_2O_5								Oxyamic
+4		TiCl ₄	(VO ₂) ²⁺		MnCl ₄						
+3	ScCl ₃	TiCl ₃	VCI ₃	CrCl ₃	MnCl ₃	FeCI ₃					chloric
+2				CrCl ₂	MnCl ₂	FeCl ₂	CoCl ₂	NiCl ₂	CuCl ₂	ZnCl ₂	
			creases		+7						
		dation num	per increases +5	+6	+6						
	OX	+4	+5		+4						
	+3	+3	+3	+3	+3	+3					
				+2	+2	+2	+2	+2	+2	+2	
	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
	4s ² 3d ¹	4s ² 3d ²	4s ² 3d ³	4s ¹ 3d ⁵	4s ² 3d ⁵	4s ² 3d ⁶	4s ² 3d ⁷	4s ² 3d ⁸	4s ¹ 3d ¹⁰	4s ² 3d ¹⁰	

Transition Metal Complexes

Ligands

- Neutral molecules or ions that have lone pair of electrons that can be used to form bond to metal
- Lewis base = electron pair donor

Metal

- Lewis Acid = electron pair acceptor
- Can accept more than one Ligand (Lewis base)

M—L bond

- Coordinate covalent bond
- Lewis acid base adduct formation

Transition Metal Complexes

Coordinate Covalent Bond

Both electrons in shared pair come from same atom

Coordination Complexes

- Central metal atom surrounded by set of ligands
 - Complex ion: $[Co(NH_3)_6]^{3+}$, $[PtCl_4]^{2-}$

Transition Metals (d block elements) – Formation Complex lons

Transition Metal ion + **Ligands** = **Complex Ions**

Transition Metal ion

- High charged density metal ion, partially filled 3d orbital
- Attract ligand (neutral, anion with lone pair electron)
- Form coordinate covalent bond lone pair from ligands

Ligands

- Neutral/anion species that donate lone pair/non bonding electron pair to metal ion (complexing agents)
- Lewis base, lone pair donor dative bond with metal ion
- Coordination number number of ligands around central ion

Transition Metals (d block elements) - Formation Complex Ions

Transition Metal ion + **Ligands** = **Complex Ions**

Transition Metal ion

- High charged density metal ion, partially filled 3d orbital
- Attract ligand (neutral, anion with lone pair electron)
- Form coordinate covalent bond lone pair from ligands

Ligands

- Neutral/anion species that donate lone pair/non bonding electron pair to metal ion (complexing agents)
- Lewis base, lone pair donor dative bond with metal ion
- Coordination number number of ligands around central ion

Coordination complexes: chemical structures that consist of a metal ion and the surrounding molecules or anions called the ligands.

Coordination compounds: are neutral compounds that contain a coordination complex. **Coordination number**: maximum number of ligands can be accommodated by the metal ion, and is a property of the metal and its associated ligand.

Transition Metals (d block elements) - Formation Complex Ions

Transition Metal ion + **Ligands** = **Complex Ions**

Transition Metal ion

- High charged density metal ion, partially filled 3d orbital
- Attract ligand (neutral, anion with lone pair electron)
- Form coordinate covalent bond lone pair from ligands

Ligands

- Neutral/anion species that donate lone pair/non bonding electron pair to metal ion (complexing agents)
- Lewis base, lone pair donor dative bond with metal ion
- Coordination number number of ligands around central ion

Common Ligands

- 1. Monodentate $M \leftarrow : L$
 - 1 donor atom
 - 1 Ione pair
 - 1 bond to metal

Anions

Molecules

H₂O, NH₃, CO

Common Ligands

2. Chelate or Polydentate Ligands

- Have two or more atoms on one molecule with lone pairs
 - Each of which can simultaneously form 2 e bonds to M¹⁺
 - Usually 5 or 6-membered rings with M
 - Sometimes form 4-membered rings
 - Must be nonlinear molecules

