

P a g e | 1 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 العلومكلية
 الانظمة الطبية الذكية نــــــــــســق

Lecture: (1)
Introduction, Procedural Programming Principles, Introduction to algorithm,

Algorithms example

Subject: Programming fundamental

Level: First
Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Introduction to C++ Programming Language

C++ is a general-purpose programming language that was developed as an enhancement of the C

language to include object-oriented paradigm. It is an imperative and a compiled language.

1. C++ is a high-level, general-purpose programming language designed for system and

application programming. It was developed by Bjarne Stroustrup at Bell Labs in 1983 as

an extension of the C programming language. C++ is an object-oriented, multi-paradigm

language that supports procedural, functional, and generic programming styles.

2. One of the key features of C++ is its ability to support low-level, system-level

programming, making it suitable for developing operating systems, device drivers, and

other system software. At the same time, C++ also provides a rich set of libraries and

features for high-level application programming, making it a popular choice for

developing desktop applications, video games, and other complex applications.

3. C++ has a large, active community of developers and users, and a wealth of resources

and tools available for learning and using the language. Some of the key features of C++

include:

4. Object-Oriented Programming: C++ supports object-oriented programming, allowing

developers to create classes and objects and to define methods and properties for these

objects.

5. Templates: C++ templates allow developers to write generic code that can work with any

data type, making it easier to write reusable and flexible code.

6. Standard Template Library (STL): The STL provides a wide range of containers and

algorithms for working with data, making it easier to write efficient and effective code.

7. Exception Handling: C++ provides robust exception handling capabilities, making it

easier to write code that can handle errors and unexpected situations.

Overall, C++ is a powerful and versatile programming language that is widely used for a range

of applications and is well-suited for both low-level system programming and high-level

application development.

P a g e | 3 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Here are some simple C++ code examples to help you understand the language:

1.Hello World:

#include <iostream>

int main() {
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

- Output

Hello, World!

Steps for C++ Program Development and Execution

1. Editing

2. Compiling

3. Linking Library files

4. Loading

5. Execution

Editing:

Editing refers the typing or writing the program in any text editor. But we want all the things in one place like

writing the program, compiling, and executing it. This is achieved with the help of software that is known as IDE

(Integrated Development Environment). IDE integrated all the tasks that are required to run a program.

Examples of IDEs: Turbo C++, Devcpp, Xcode, Visual Studio Code, CodeBlocks, Eclipse, etc.

Compiling:

Consider a program first.cpp which is saved in Hard Disc. To compile the first.cpp file, we need an IDE that

contains a compiler. The compiler converts the high-level code into machine-level language code and a new

executable file with the name first.exe is generated and get stored in the hard disc. If the compiler finds any error in

the code, it throws the error to the programmer else the code is successfully compiled.

Example: When first.cpp is compiled, the executable files are generated like max.exe and main.exe and get stored in

the hard disc to get executed later.

P a g e | 4 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Linking Libraries:

Every language has some built-in objects and functions that can be reused in any program. The built-in objects and

functions are grouped inside libraries that can be included in programs as header files. These libraries and header

files are linked with the code during compilation where the library code is also converted to an executable file along

with the entire program.

Example: We included iostream which is a header file for cout and cin objects. The iostream is attached to the code

during compilation where the header file code is also converted to executable code with .exe extension. This is

called the linking of the library.

Loading: To execute the program code, the code must be brought to the main memory from the secondary memory.

Execution: As soon as the program gets loaded in the main memory in different sections as given below, the

program execution starts. The execution of the program starts from the first line of the main function.

Main Memory Management

Main memory has different sections.

1. Code Section: The entire machine-level code is copied to the code section of the main memory. All the

arrangements that are called relocations are done here and it is done by the operating system.

2. Stack: All the variables (that are used for storing the data values) are stored in the stack section of the code.

3. Heap: Heap memory stores the dynamically allocated variables, the variable that is allocated during the run

time of the program (discussed later in detail).

Example: The variables in the program first.cpp are x and y is stored in the stack of main memory. The rest of the

entire code is copied to the code section and the heap will be empty in this case as there are no dynamically

allocated variables.

P a g e | 5 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Procedural Programming Principles C++

Procedural programming is a programming paradigm that focuses on defining procedures or

routines that are executed sequentially. In C++, procedural programming involves organizing

code into functions and structures. Here are some key principles of procedural programming in

C++:

Functions:

 Break down your program into smaller functions. Each function should perform a

specific task.

 Functions should have a clear purpose and should ideally perform a single, well-defined

operation.

// Function declaration

void greetUser(std::string name);

int main() {

 // Function call

 greetUser("John");

 return 0;

}

// Function definition

void greetUser(std::string name) {

 std::cout << "Hello, " << name << "!\n";

}

Modularity:

 Organize your code into modules using functions.

 Use header files for function declarations and separate implementation files.

Data Structures

 Use structs to group related data together.

Sequential Execution:

 Code is executed sequentially, one statement after another.

 Use control structures for conditional and iterative execution.

// Example of sequential execution with if statement

int number = 5;

P a g e | 6 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

if (number > 0) {

 std::cout << "Number is positive.\n";

} else {

 std::cout << "Number is non-positive.\n";

}

Variable Scope:

 Variables have scope, meaning they are only accessible within a certain part of the

program.

 Use local variables within functions to limit their scope.

Algorithm

In mathematics and computer science, an algorithm is a finite sequence of rigorous instructions, typically

used to solve a class of specific problems or to perform a computation. Algorithms are used as

specifications for performing calculations and data processing. More advanced algorithms can use

conditionals to divert the code execution through various routes (referred to as automated decision-making)

and deduce valid inferences (referred to as automated reasoning), achieving automation eventually. Using

human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan

Turing with terms such as "memory", "search" and "stimulus".

In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not

guarantee correct or optimal results, especially in problem domains where there is no well-defined correct

or optimal result.

As an effective method, an algorithm can be expressed within a finite amount of space and time and in a

well-defined formal language for calculating a function. Starting from an initial state and initial input

(perhaps empty), the instructions describe a computation that, when executed, proceeds through a finite

number of well-defined successive states, eventually producing "output" and terminating at a final ending

state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as

randomized algorithms, incorporate random input.

Programming Algorithm Defined

A programming algorithm is a procedure or formula used for solving a problem. It is based on conducting a

sequence of specified actions in which these actions describe how to do something, and your computer will do it

exactly that way every time. An algorithm works by following a procedure, made up of inputs. Once it has followed

all the inputs, it will see a result, also known as output.

Characteristics of an algorithm:

1. Precision – the steps are precisely stated.

P a g e | 7 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

2. Uniqueness – results of each step are uniquely defined and only depend on the input and the result of the

preceding steps.

3. Finiteness – the algorithm stops after a finite number of instructions are executed.

4. Input – the algorithm receives input.

5. Output – the algorithm produces output.

6. Generality – the algorithm applies to a set of inputs.

There are seven different types of programming algorithms:

1. Sort algorithms

2. Search algorithms

3. Hashing

4. Dynamic Programming

5. Exponential by squaring

6. String matching and parsing

7. Primality testing algorithms

The advantages of programming algorithms include:

 A stepwise representation of a solution to a given problem, making it easy to understand.

 Uses a definite procedure.

 Not dependent on a particular programming language.

 Every step in an algorithm has its own logical sequence, making it easy to debug.

Algorithm Examples

 Algorithm 1: Add two numbers entered by the user

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

 sum←num1+num2

Step 5: Display sum

Step 6: Stop

Algorithm 2: Find the largest number among three numbers

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a > b

 If a > c

 Display a is the largest number.

 Else

 Display c is the largest number.

P a g e | 8 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Else

 If b > c

 Display b is the largest number.

 Else

 Display c is the greatest number.

Step 5: Stop

Algorithm 3: Find Roots of a Quadratic Equation ax2 + bx + c = 0

Step 1: Start

Step 2: Declare variables a, b, c, D, x1, x2, rp and ip;

Step 3: Calculate discriminant

 D ← b2-4ac

Step 4: If D ≥ 0

 r1 ← (-b+√D)/2a

 r2 ← (-b-√D)/2a

 Display r1 and r2 as roots.

 Else

 Calculate real part and imaginary part

 rp ← -b/2a

 ip ← √(-D)/2a

 Display rp+j(ip) and rp-j(ip) as roots

Step 5: Stop

Algorithm 4: Find the factorial of a number

Step 1: Start

Step 2: Declare variables n, factorial and i.

Step 3: Initialize variables

 factorial ← 1

 i ← 1

Step 4: Read value of n

Step 5: Repeat the steps until i = n

 5.1: factorial ← factorial*i

 5.2: i ← i+1

Step 6: Display factorial

Step 7: Stop

Algorithm 5: Check whether a number is prime or not

Step 1: Start

Step 2: Declare variables n, i, flag.

Step 3: Initialize variables

 flag ← 1

 i ← 2

P a g e | 9 Study Year: 2025-2024

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Step 4: Read n from the user.

Step 5: Repeat the steps until i=(n/2)

 5.1 If remainder of n÷i equals 0

 flag ← 0

 Go to step 6

 5.2 i ← i+1

Step 6: If flag = 0

 Display n is not prime

 else

 Display n is prime

Step 7: Stop

Algorithm 6: Find the Fibonacci series till the term less than 1000

Step 1: Start

Step 2: Declare variables first_term,second_term and temp.

Step 3: Initialize variables first_term ← 0 second_term ← 1

Step 4: Display first_term and second_term

Step 5: Repeat the steps until second_term ≤ 1000

 5.1: temp ← second_term

 5.2: second_term ← second_term + first_term

 5.3: first_term ← temp

 5.4: Display second_term

Step 6: Stop

