

Department of biology

((GENERAL MATHEMATICS))

First Stage

Week 1- lecture 1

Real Numbers and Inequalities

الأعداد الحقيقية والتباين

By Mm.Ali Alawadi

Irrational Numbers

Numbers

Introduction to Real Numbers

Real numbers are an essential concept in mathematics, forming the basis for many advanced topics including calculus, algebra, and real-world problem-solving. Real numbers include all the numbers that can be represented on a number line. They unify rational and irrational numbers under one comprehensive category.

1. Classification of Real Numbers

1. Natural Numbers (N):

-These are the counting numbers starting from 1, such as

$$\{1, 2, 3, 4, ...\}$$

2. Whole Numbers (W):

- Includes all natural numbers and the number 0, such as

$$\{0, 1, 2, 3, ...\}$$

3. Integers (Z):

- Extends whole numbers to include negatives, such as

$$\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

4. Rational Numbers (Q):

- Numbers that can be expressed as fractions p/q, where p and q are integers and $q \neq 0$.
 - Examples include 1/2, -3/4.

5. Irrational Numbers (I):

- Numbers that cannot be expressed as fractions, such as $\sqrt{2}$, π , and e.

2. Properties of Real Numbers

1. Commutative Property:

- Addition:

$$a + b = b + a$$
 $3 + 5 = 5 + 3$

- Multiplication:

$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$$
 \longrightarrow $3 \times 5 = 5 \times 3$

2. Associative Property:

- Addition:

$$(a + b) + c = a + (b + c)$$

$$(3 + 5) + 2 = 3 + (5 + 2)$$

$$8 + 2 = 3 + 7$$

$$10 = 10$$

- Multiplication:

$$(a \times b) \times c = a \times (b \times c)$$

$$(3 \times 5) \times 2 = 3 \times (5 \times 2)$$

$$15 \times 2 = 3 \times 10$$

$$30 = 30$$

3. Distributive Property:

- Multiplication over addition:

$$a \times (b+c) = a \times b + a \times c \implies 3 \times (5+2) = 3 \times 5 + 3 \times 2$$
$$= 15+6$$
$$= 21$$

4. Inverse Elements:

- Additive Inverse:

$$a + (-a) = 0$$
 $3 + (-3) = 0$

- Multiplicative Inverse:

$$a \times (1/a) = 1$$
 $(a \neq 0)$ $3 \times (1/3) = 1$

Table of Properties

Let a, b, and c be real numbers, variables, or algebraic expressions.

(These are properties you need to know.)

	Property	Example
1.	Commutative Property of Addition $a + b = b + a$	2+3=3+2
2.	Commutative Property of Multiplication $a \cdot b = b \cdot a$	2 • (3) = 3 • (2)
3.	Associative Property of Addition $a + (b + c) = (a + b) + c$	2+(3+4)=(2+3)+4
4.	Associative Property of Multiplication $a \cdot (b \cdot c) = (a \cdot b) \cdot c$	2 • (3 • 4) = (2 • 3) • 4
5.	Distributive Property $a \cdot (b + c) = a \cdot b + a \cdot c$	2 • (3 + 4) = 2 • 3 + 2 • 4
6.	Additive Identity Property $a + 0 = a$	3 + 0 = 3
7.	Multiplicative Identity Property $a \cdot 1 = a$	3 • 1 = 3
8.	Additive Inverse Property $a + (-a) = 0$	3 + (-3) = 0
9.	Multiplicative Inverse Property $\mathbf{a} \cdot \left(\frac{1}{a}\right) = 1$ Note: \mathbf{a} cannot = 0	$3 \cdot \left(\frac{1}{3}\right) = 1$
10.	Zero Property $a \cdot 0 = 0$	5 • 0 = 0

Example: Classify the following numbers: 0, -1, $\sqrt{2}$, π , 3.5

3. The Real Line

The real numbers can be represented geometrically as points on a number line, which we call the Real Line.

Inequalities

An inequality is a mathematical statement that compares two values using symbols such as <, >, \le , or \ge . Inequalities describe a range of possible solutions rather than a single value.

Example: Solve 2x + 3 > 7

1. Subtract 3 from both sides: 2x > 4

x > 22. Divide both sides by 2:

Example: Solve the inequality: $5x - 7 \le 18$

 $5x \le 18 + 7$

x < 25/5

x < 5

Rules for Inequalities

Rules for inequalities

If a, b, and c are real numbers, then:

1. $a < b \implies a + c < b + c$

 $2. \ a < b \qquad \Longrightarrow \qquad a - c < b - c$

3. a < b and c > 0 \Longrightarrow ac < bc4. a < b and c < 0 \Longrightarrow ac > bc; in particular, -a > -b5. a > 0 \Longrightarrow $\frac{1}{a} > 0$ 6. 0 < a < b \Longrightarrow $\frac{1}{b} < \frac{1}{a}$

Rules 1–4 and 6 (for a > 0) also hold if < and > are replaced by \le and \ge .

Intervals

An **interval** is a way to represent the possible values of a variable that satisfy a given inequality. Intervals use parentheses () or brackets [] to indicate the range of values.

Types of Intervals:

1. Open Interval:

Does not include the endpoints, denoted with parentheses ()

$$a < x < b \implies (a, b)$$

2. Closed Interval:

Includes the endpoints, denoted with brackets []

$$a \le x \le b \implies [a, b]$$

open interval (a, b)a closed interval [a, b]half-open interval [a, b]half-open interval [a, b]

3. Half-Open Interval:

Includes only one endpoint

$$a \le x < b \implies [a, b)$$

Example: Solve The Following Inequalities. Express the solution sets in terms of intervals and graph them.

(a)
$$2x - 1 > x + 3$$

(b)
$$-\frac{x}{3} \ge 2x - 1$$

Solution:

(a)
$$2x - 1 > x + 3$$
 Add 1 to both sides.

$$2x > x + 4$$
 Subtract x from both sides.

$$x > 4$$
 The solution set is the interval $(4, \infty)$.

(b)
$$-\frac{x}{3} \ge 2x - 1$$
 Multiply both sides by -3 .

$$x \le -6x + 3$$
 Add $6x$ to both sides.

$$7x \le 3$$
 Divide both sides by 7.

$$x \le \frac{3}{7}$$
 The solution set is the interval $(-\infty, 3/7]$.

