

Security of Computer and Networks

asaad.nayyef@uomus.edu.iq

Data Attacks:

An attempted crypto analysis is known as an attack. The level of information that decoder is able to extract from the cryptosystem and can be divided into five ways of decryption which are as follows:

Cipher text only attack: The crypto analyst has cipher text of several messages and all of which were encrypted using the same encryption algorithm. Then job is to recover the plain text or the key used to encrypt the messages. So, to decrypt other part of messages encrypted with the help of same keys.

Known Plaintext attack: Crypto analysts seek the possession of pairs of known plain text and cipher text. Then job is to hold the key used to encrypt the messages or an algorithm to decrypt messages.

Chosen Plaintext Attack (CPA): Crypto analyst not only hold the cipher text but also some parts of chosen plain text. Intruder is identified to be placed at encryption site to do the attack.

Chosen cipher text attack (CCA): In this crypto analyst hold the possession of chosen cipher text and plain text being decrypted from the private key. However, it only has access to an encryption machine.

Cryptanalysis of Caesar Cipher

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is easily performed. A brute-force attack involves systematically checking all possible keys until the correct key is found. Simply try all the 25 possible keys. In this case, the plaintext leaps out as occupying the third line.

Security of Computer and Networks asaad.nayyef@uomus.edu.iq

8	ринм	DH	DIWHU	MKH	WD.TD	SDUMB
KEY	LIIIIVV	FIL	DIWIIO	WILL	MINUD	DDOWD
1	oggv	og	chvgt	vjg	vqic	rctva
2	nffu	nf	bgufs	uif	uphb	qbsuz
3	meet	me	after	the	toga	party
4	ldds	ld	zesdq	sgd	snfz	ozqsx
5	kccr	kc	ydrcp	rfc	rmey	nyprw
6	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	ду	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fqhjo
14	btti	bt	puitg	iwt	idvp	epgin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrrg	zr	nsgre	gur	gbtn	cnegl
17	yqqf	уq	mrfqd	ftq	fasm	bmdfk
18	xppe	хр	lqepc	esp	ezrl	alcej
19	wood	wo	kpdob	dro	dyqk	zkbdi
20	vnnc	vn	jocna	cqn	схрј	yjach
21	ummb	um	inbmz	bpm	bwoi	xizbg
22	tlla	tl	hmaly	aol	avnh	whyaf
23	skkz	sk	glzkx	znk	zumg	vgxze
24	rjjy	rj	fkyjw	ymj	ytlf	ufwyd
25	qiix	qi	ejxiv	xli	xske	tevxc

Security of Computer and Networks

asaad.nayyef@uomus.edu.iq

Three important characteristics of this problem enabled us to use a brute-force cryptanalysis:

- 1. The encryption and decryption algorithms are known.
- 2. There are only 25 keys to try.
- 3. The language of the plaintext is known and easily recognizable.