

College of Science

Department of Biochemistry

كلية العلـــوم قــســــم الكيمياء الحياتية

المحاضرة الثالثة

Integration

المادة: الرياضيات

المرحلة: الاولى

اسم الاستاذ: م.م. ريام ثائر احمد

Integration

College of Science

Department of Biochemistry

The idea of integration is that we can compute many quantities by breaking them into small pieces, and then summing the contribution from each small part.

1. Indefinite integrals:

The set of all anti derivatives of a function is called indefinite integral of the function. Assume u and v denote differentiable functions of x, and a, n, and c are constants, then the integration formulas are:-

$$1) \int du = u(x) + c$$

$$2) \int a \cdot u(x) dx = a \int u(x) dx$$

3)
$$\int (u(x) \mp v(x)) dx = \int u(x) dx \mp \int v(x) dx$$

4)
$$\int u^n du = \frac{u^{n+1}}{n+1} + c$$
 when $n \neq -1$ & $\int u^{-1} du = \int \frac{1}{u} du = \ln u + c$

$$5) \int a^u du = \frac{a^u}{\ln a} + c \quad \Rightarrow \quad \int e^u du = e^u + c$$

EX-1 – Evaluate the following integrals:

$$1) \int 3x^2 dx$$

6)
$$\int \frac{x+3}{\sqrt{x^2+6x}} dx$$

$$2) \int \left(\frac{1}{x^2} + x\right) dx$$

7)
$$\int \frac{x+2}{x^2} dx$$

$$3) \int x \sqrt{x^2 + 1} \, dx$$

8)
$$\int \frac{e^x}{1+3e^x} dx$$

4)
$$\int (2t+t^{-1})^2 dt$$

$$9) \int 3x^3 \cdot e^{-2x^4} dx$$

$$5) \int \sqrt{(z^2 - z^{-2})^2 + 4} \, dz$$

$$10) \int 2^{-4x} dx$$

<u>Sol.</u> –

1)
$$\int 3x^2 dx = 3 \int x^2 dx = 3 \frac{x^3}{3} + c = x^3 + c$$

College of Science

Department of Biochemistry

2)
$$(x^{-2} + x)dx = \int x^{-2} dx + \int x dx = \frac{x^{-1}}{-1} + \frac{x^2}{2} + c = -\frac{1}{x} + \frac{x^2}{2} + c$$

3) $\int x\sqrt{x^2 + 1} dx = \frac{1}{2} \int 2x(x^2 + 1)^{\frac{1}{2}} dx = \frac{1}{2} \frac{(x^2 + 1)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{1}{3} \sqrt{(x^2 + 1)^3} + c$
4) $\int (2t + t^{-1})^2 dt = \int (4t^2 + 4 + t^{-2}) dt = 4\frac{t^3}{3} + 4t + \frac{t^{-1}}{-1} + c = \frac{4}{3}t^3 + 4t - \frac{1}{t} + c$
5) $\int \sqrt{(z^2 - z^{-2})^2 + 4} dz = \int \sqrt{z^4 - 2 + z^{-4}} + 4 dz = \int \sqrt{z^4 + 2 + z^{-4}} dz$
 $= \int \sqrt{(z^2 + z^{-2})^2} dz = \int (z^2 + z^{-2}) dz = \frac{z^3}{3} + \frac{z^{-1}}{-1} + c = \frac{1}{3}z^3 - \frac{1}{z} + c$
6) $\int \frac{x + 3}{\sqrt{x^2 + 6x}} dx = \frac{1}{2} \int (2x + 6) \cdot (x^2 + 6x)^{-\frac{1}{2}} dx$
 $= \frac{1}{2} \cdot \frac{(x^2 + 6x)^{\frac{1}{2}}}{\frac{1}{2}} + c = \sqrt{x^2 + 6x} + c$
7) $\int \frac{x + 2}{x^2} dx = \int \left(\frac{x}{x^2} + \frac{2}{x^2}\right) dx = \int (x^{-1} + 2x^{-2}) dx = \ln x + \frac{2x^{-1}}{-1} + c = \ln x - \frac{2}{x} + c$
8) $\int \frac{e^x}{1 + 3e^x} dx = \frac{1}{3} \int 3e^x (1 + 3e^x)^{-1} dx = \frac{1}{3} \ln(1 + 3e^x) + c$
9) $\int 3x^3 \cdot e^{-2x^4} dx = -\frac{3}{8} \int -8x^3 \cdot e^{-2x^4} dx = -\frac{3}{8} \cdot e^{-2x^4} + c$
10) $\int 2^{-4x} dx = -\frac{1}{4} \int 2^{-4x} \cdot (-4dx) = -\frac{1}{4} \cdot 2^{-4x} \cdot \frac{1}{\ln 2} + c$

2. Integrals of trigonometric functions:

The integration formulas for the trigonometric functions are:

$$6) \int \sin u \cdot du = -\cos u + c$$

7)
$$\int \cos u \cdot du = \sin u + c$$

8)
$$\int \tan u \cdot du = -\ln|\cos u| + c$$

9)
$$\int \cot u \cdot du = \ln |\sin u| + c$$

A. Marie Control of the Control of t

Al-Mustagbal University

College of Science

Department of Biochemistry

10) $\int \sec u \cdot du = \ln |\sec u + \tan u| + c$

11) $\int \csc u \cdot du = -\ln|\csc u + \cot u| + c$

12)
$$\int \sec^2 u \cdot du = \tan u + c$$

13) $\int \csc^2 u \cdot du = -\cot u + c$

14)
$$\int \sec u \cdot \tan u \cdot du = \sec u + c$$

15) $\int \csc u \cdot \cot u \cdot du = -\csc u + c$

Example 2: Evaluate the following integrals:

1)
$$\int \cos(3\theta-1)d\theta$$

6)
$$\int \frac{d\theta}{\cos^2 \theta}$$

$$2) \int x \cdot \sin(2x^2) dx$$

7)
$$\int (1-\sin^2 3t) \cdot \cos 3t \ dt$$

3)
$$\int \cos^2(2y) \cdot \sin(2y) dy$$

8)
$$\int \tan^3(5x) \cdot \sec^2(5x) \ dx$$

4)
$$\int sec^3 x \cdot tan x \ dx$$

9)
$$\int \sin^4 x \cdot \cos^3 x \ dx$$

5)
$$\int \sqrt{2 + \sin 3t} \cdot \cos 3t \ dt$$

$$10) \int \frac{\cot^2 \sqrt{x}}{\sqrt{x}} dx$$

Solution:

1)
$$\frac{1}{3} \int 3\cos(3\theta - 1)d\theta = \frac{1}{3}\sin(3\theta - 1) + c$$

2)
$$\frac{1}{4} \int 4x \cdot \sin(2x^2) dx = -\frac{1}{4} \cos(2x^2) + c$$

3)
$$-\frac{1}{2}\int (\cos 2y)^2 \cdot (-2\sin 2y \, dy) = -\frac{1}{2} \cdot \frac{(\cos 2y)^3}{3} + c = -\frac{1}{6}(\cos 2y)^3 + c$$

4)
$$\int \sec^2 x \cdot (\sec x \cdot \tan x \cdot dx) = \frac{\sec^3 x}{3} + c$$

5)
$$\frac{1}{3}\int (2+\sin 3t)^{1/2}(3\cos 3t \ dt) = \frac{1}{3}\cdot\frac{(2+\sin 3t)^{3/2}}{3/2} + c = \frac{2}{9}\sqrt{(2+\sin 3t)^3} + c$$

College of Science

Department of Biochemistry

6)
$$\int \frac{d\theta}{\cos^2 \theta} = \int \sec^2 \theta \cdot d\theta = \tan \theta + c$$
7)
$$\int (1 - \sin^2 3t) \cdot \cos 3t \ dt = \frac{1}{3} \int 3\cos 3t \ dt - \frac{1}{3} \int (\sin 3t)^2 \cdot 3\cos 3t \ dt$$

$$= \frac{1}{3} \sin 3t - \frac{1}{3} \cdot \frac{\sin^3 3t}{3} + c = \frac{1}{3} \cdot \sin 3t - \frac{1}{9} \sin^3 3t + c$$
8)
$$\int \int \tan^3 5x \cdot (5 \sec^2 5x \ dx) = \frac{1}{5} \cdot \frac{\tan^4 5x}{4} + c = \frac{1}{20} \tan^4 5x + c$$
9)
$$\int \sin^4 x \cdot \cos^3 x \ dx = \int \sin^4 x \cdot (1 - \sin^2 x) \cdot \cos x \ dx$$

$$= \int \sin^4 x \cdot \cos x \ dx - \int \sin^6 x \cdot \cos x \ dx = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + c$$

$$10) \int \frac{\cot^2 \sqrt{x}}{\sqrt{x}} dx = \int \frac{\csc^2 \sqrt{x} - 1}{\sqrt{x}} dx = 2 \int \frac{\csc^2 \sqrt{x}}{2\sqrt{x}} - \int x^{-\frac{1}{2}} dx$$
$$= 2 \left(-\cot \sqrt{x} \right) - \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c = -2\cot \sqrt{x} - 2\sqrt{x} + c$$

3. Integrals of inverse trigonometric functions:

The integration formulas for the inverse trigonometric functions are:

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + c = -\cos^{-1} \frac{u}{a} + c \qquad ; \qquad \forall u^2 < a^2$$

$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + c = -\frac{1}{a} \cot^{-1} \frac{u}{a} + c$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + c = -\frac{1}{a} \csc^{-1} \left| \frac{u}{a} \right| + c \qquad ; \qquad \forall u^2 > a^2$$

Example 3: Evaluate the following integrals:

$$1) \int \frac{x^2}{\sqrt{1-x^6}} \, dx$$

2)
$$\int \frac{dx}{\sqrt{q-x^2}}$$

3)
$$\int \frac{x}{1+x^4} dx$$

$$4) \int \frac{\sec^2 x}{\sqrt{1-\tan^2 x}} dx$$

$$5) \int \frac{dx}{x\sqrt{4x^2-1}}$$

6)
$$\int \frac{2dx}{\sqrt{x}(1+x)}$$

7)
$$\int \frac{dx}{1+3x^2}$$

8)
$$\int \frac{2\cos x}{1+\sin^2 x} dx$$

$$9) \int \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$$

10)
$$\int \frac{\tan^{-1} x}{1+x^2} dx$$

Solution:

1)
$$\frac{1}{3} \int \frac{1}{\sqrt{1-(x^3)^2}} (3x^2 dx) = \frac{1}{3} \sin^{-1} x^3 + c$$

2)
$$\int \frac{dx}{\sqrt{9-x^2}} = \sin^{-1} \frac{x}{3} + c$$

3)
$$\frac{1}{2} \int \frac{2x}{1+(x^2)^2} dx = \frac{1}{2} tan^{-1} x^2 + c$$

4)
$$\int \frac{\sec^2 x}{\sqrt{1-\tan^2 x}} dx = \sin^{-1}(\tan x) + c$$

$$5) \int \frac{2 dx}{2x\sqrt{(2x)^2 - 1}} = \sec^{-1}(2x) + c$$

College of Science

Department of Biochemistry

6)
$$\int \frac{2}{\sqrt{x(1+x)}} dx = 4 \int \frac{\sqrt{2\sqrt{x}} dx}{1+(\sqrt{x})^2} = 4 \tan^{-1} \sqrt{x} + c$$

7)
$$\frac{1}{\sqrt{3}} \int \frac{\sqrt{3} dx}{1 + (\sqrt{3}x)^2} = \frac{1}{\sqrt{3}} tan^{-1} (\sqrt{3}x) + c$$

8)
$$2\int \frac{\cos x \ dx}{1 + (\sin x)^2} = 2 \tan^{-1}(\sin x) + c$$

9)
$$\int e^{\sin^{-1}x} \cdot \frac{dx}{\sqrt{1-x^2}} = e^{\sin^{-1}x} + c$$

10)
$$\int tan^{-1} x \cdot \frac{dx}{1+x^2} = \frac{(tan^{-1} x)^2}{2} + c$$

4. Integrals of hyperbolic functions:

The integration formulas for the hyperbolic functions are:

19)
$$\int \sinh u \cdot du = \cosh u + c$$

20)
$$\int \cosh u \cdot du = \sinh u + c$$

21)
$$\int \tanh u \cdot du = \ln(\cosh u) + c$$

22)
$$\int \coth u \cdot du = \ln(\sinh u) + c$$

23)
$$\int \sec h^2 u \cdot du = \tanh u + c$$

$$24) \int \csc h^2 u \cdot du = \coth u + c$$

25)
$$\int \sec hu \cdot \tanh u \cdot du = -\sec hu + c$$

26)
$$\int \csc hu \cdot \coth u \cdot du = -\csc hu + c$$

College of Science

Department of Biochemistry

Example 4: Evaluate the following integrals:

$$1) \int \frac{\cosh(\ln x)}{x} dx$$

$$6) \int \sec h^2(2x-3) dx$$

$$2) \int \sinh(2x+1) dx$$

7)
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

3)
$$\int \frac{\sinh x}{\cosh^4 x} dx$$

8)
$$\int \left(e^{ax} - e^{-ax}\right) dx$$

4)
$$\int x \cdot \cosh(3x^2) dx$$

9)
$$\int \frac{\sinh x}{1+\cosh x} dx$$

5)
$$\int \sinh^4 x \cdot \cosh x \, dx$$

Solution:

1)
$$\int \cosh(\ln x) \cdot \left(\frac{dx}{x}\right) = \sinh(\ln x) + c$$

$$2)\frac{1}{2}\int \sinh(2x+1)\cdot(2\,dx) = \frac{1}{2}\cosh(2x+1) + c$$

3)
$$\int \frac{1}{\cosh^3 x} \cdot \frac{\sinh x}{\cosh x} dx = \int \sec h^3 x \cdot \tanh x dx$$

$$= -\int \sec h^2 x \cdot \left(-\sec hx \cdot \tanh x \ dx\right) = -\frac{\sec h^3 x}{3} + c$$

$$4)\frac{1}{6}\int \cosh(3x^2)\cdot (6x\,dx) = \frac{1}{6}\sinh(3x^2) + c$$

$$5) \int \sinh^4 x \cdot (\cosh x \, dx) = \frac{\sinh^5 x}{5} + c$$

6)
$$\frac{1}{2} \int \sec h^2(2x-3) \cdot (2 dx) = \frac{1}{2} \tanh(2x-3) + c$$

7)
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx = \int \tanh x \, dx = \ln(\cosh x) + c$$

8)
$$2\int \frac{e^{ax} - e^{-ax}}{2} dx = \frac{2}{a} \int \sinh ax \ (a \ dx) = \frac{2}{a} \cosh ax + c$$

College of Science

Department of Biochemistry

9)
$$\int \frac{\sinh x \, dx}{1 + \cosh x} = \ln(1 + \cosh x) + c$$

$$10) - \int \csc hx \cdot (-\csc hx \cdot \coth x \, dx) = -\frac{\csc h^2 x}{2} + c$$

5. Integrals of inverse hyperbolic functions:

The integration formulas for the inverse hyperbolic functions are:

27)
$$\int \frac{du}{\sqrt{1+u^2}} = \sinh^{-1} u + c$$

28)
$$\int \frac{du}{\sqrt{u^2 - 1}} = \cosh^{-1} u + c$$

29)
$$\int \frac{du}{1-u^2} = \begin{cases} \tanh^{-1} u + c & \text{if } |u| < 1 \\ \coth^{-1} u + c & \text{if } |u| > 1 \end{cases} = \frac{1}{2} \ln \left| \frac{1+u}{1-u} \right| + c$$

30)
$$\int \frac{du}{u\sqrt{1-u^2}} = -\sec h^{-1}|u| + c = -\cosh^{-1}\left(\frac{1}{|u|}\right) + c$$

31)
$$\int \frac{du}{u\sqrt{1+u^2}} = -\csc h^{-1}|u| + c = -\sinh^{-1}\left(\frac{1}{|u|}\right) + c$$

Example 5: Evaluate the following integrals

1)
$$\int \frac{dx}{\sqrt{1+4x^2}}$$
 2) $\int \frac{dx}{\sqrt{4+x^2}}$ 3) $\int \frac{dx}{1-x^2}$

$$2) \int \frac{dx}{\sqrt{4+x^2}}$$

$$3)\int \frac{dx}{1-x^2}$$

$$4) \int \frac{dx}{x\sqrt{4+x^2}}$$

$$5) \int \frac{\sec^2 \theta \ d\theta}{\sqrt{\tan^2 \theta - 1}}$$

4)
$$\int \frac{dx}{x\sqrt{4+x^2}}$$
 5) $\int \frac{\sec^2\theta \ d\theta}{\sqrt{\tan^2\theta - 1}}$ 6) $\int \tanh^{-1}\left(\ln\sqrt{x}\right) \cdot \frac{dx}{x\left(1 - \ln^2\sqrt{x}\right)}$

College of Science

Department of Biochemistry

Solution:

1)
$$\frac{1}{2} \int \frac{2 dx}{\sqrt{1+4x^2}} = \frac{1}{2} \sinh^{-1} 2x + c$$

2)
$$\int \frac{\frac{1}{2} dx}{\sqrt{1 + (\frac{x}{2})^2}} = \sinh^{-1} \frac{x}{2} + c$$

3)
$$\int \frac{dx}{1-x^2} = \tanh^{-1} x + c$$
 if $|x| < 1$
= $\coth^{-1} x + c$ if $|x| > 1$

4)
$$\int \frac{dx}{x\sqrt{4+x^2}} = \frac{1}{2} \int \frac{\frac{1}{2} dx}{\frac{x}{2}\sqrt{1+(\frac{x}{2})^2}} = -\frac{1}{2} \csc h^{-1} \left| \frac{x}{2} \right| + c$$

5)
$$\int \frac{1}{\sqrt{\tan^2 \theta - 1}} \left(\sec^2 \theta \ d\theta \right) = \cosh^{-1} (\tan \theta) + c$$

6) let
$$u = \ln \sqrt{x} = \frac{1}{2} \ln x$$
 $du = \frac{1}{2x} dx$

$$\int \tanh^{-1} (\ln \sqrt{x}) \cdot \frac{dx}{x(1 - \ln^2 \sqrt{x})} = \int \tanh^{-1} u \cdot \frac{2 du}{1 - u^2}$$

$$= 2 \frac{(\tanh^{-1} u)^2}{2} + c = [\tanh^{-1} (\ln \sqrt{x})]^2 + c$$