

Mathematics and Biostatistics

First Stage

LECTURE 1 Introduction to Mathematical Concepts

BY

Asst. Lecturer Sajjad Ibrahim Ismael

2024-2025

1. General Concepts

Mathematics is built on fundamental operations and principles used in solving equations, analyzing structures, and modeling problems.

Example 1: Solving an Equation

Solve 5x + 3 = 18.

Solution:

$$5x + 3 = 18 \implies 5x = 18 - 3 \implies 5x = 15 \implies x = 3.$$

Example 2: Simplifying Expressions

Simplify 2(x+3) + 4(x-2).

Solution:

$$2x + 6 + 4x - 8 = 6x - 2$$
.

Example 3: Solving an Equation with Fractions

Solve
$$\frac{x}{2} + \frac{x}{3} = 5$$
.

Solution:

- 1. Find the least common denominator (LCD) of 2 and 3, which is 6.
- 2. Multiply through by 6 to eliminate fractions:

$$6\cdot rac{x}{2}+6\cdot rac{x}{3}=6\cdot 5 \implies 3x+2x=30.$$

3. Combine terms:

$$5x = 30 \implies x = 6.$$

Example 4: Word Problem with an Equation

A total of \$50 is divided between two people. One person gets \$10 more than the other. Find how much each person receives.

Solution:

Let x be the amount the first person gets. Then the second person gets x+10.

$$x + (x + 10) = 50 \implies 2x + 10 = 50 \implies 2x = 40 \implies x = 20.$$

The first person gets \$20, and the second person gets \$30.

2. Coordinate System and Graph in the Plane

The coordinate plane consists of two axes: the x-axis (horizontal) and the y-axis (vertical). Points are located using ordered pairs (x,y).

Example 1: Plotting Points

Plot (-2,4), (0,0), and (3,-5):

- (-2,4): Move 2 units left and 4 units up.
- (0,0): Origin, no movement needed.
- (3, -5): Move 3 units right and 5 units down.

Example 2: Finding Distance Between Two Points

The distance d between two points (x_1,y_1) and (x_2,y_2) is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Find the distance between (1,2) and (4,6):

$$d = \sqrt{(4-1)^2 + (6-2)^2} = \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5.$$

Example 3: Midpoint Formula

The midpoint of a line segment joining (x_1,y_1) and (x_2,y_2) is:

$$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
ight).$$

Find the midpoint of the segment joining (1,4) and (-3,6):

$$M = \left(\frac{1+(-3)}{2}, \frac{4+6}{2}\right) = \left(\frac{-2}{2}, \frac{10}{2}\right) = (-1, 5).$$

Example 4: Equation of a Circle

The equation of a circle with center (h,k) and radius r is:

$$(x-h)^2 + (y-k)^2 = r^2$$
.

Find the equation of a circle with center (2,-3) and radius 5:

$$(x-2)^2 + (y+3)^2 = 25.$$

3. Inequalities

Inequalities describe relationships between numbers or expressions. Solutions are often intervals or sets of numbers.

Example 1: Solving a Linear Inequality

Solve $3x + 2 \le 8$.

Solution:

$$3x + 2 \le 8 \implies 3x \le 6 \implies x \le 2.$$

The solution is $x \leq 2$.

Example 2: Graphing Inequalities on a Number Line

Graph the inequality x > -1:

- Open circle at -1 (not included).
- Shade all points to the right of -1.

Example 3: Systems of Inequalities

Solve $x + y \le 4$ and x - y > 1.

Graph each inequality in the coordinate plane and find the overlap.

Example 4: Compound Inequalities

Solve $2 < 3x - 4 \le 8$.

Solution:

Break it into two inequalities:

1.
$$2 < 3x - 4$$
:

$$6 < 3x \implies x > 2$$
.

2.
$$3x - 4 \le 8$$
:

$$3x \le 12 \implies x \le 4.$$

Combine the results: $2 < x \le 4$.

The solution is $x \in (2,4]$.

Example 5: Graphing Systems of Linear Inequalities

Graph y>2x-1 and $y\leq -x+3$.

- For y>2x-1, graph the line y=2x-1 with a dashed line and shade above.
- For $y \le -x + 3$, graph the line y = -x + 3 with a solid line and shade below. The solution is the overlapping shaded region.

4. Absolute Value or Magnitude

Absolute value measures the distance from zero, irrespective of direction.

Example 1: Solving Absolute Value Equations

Solve |3x - 4| = 7:

Solution:

$$3x - 4 = 7$$
 or $3x - 4 = -7$.

$$3x = 11 \implies x = \frac{11}{3}, \quad 3x = -3 \implies x = -1.$$

The solutions are $x = \frac{11}{3}$ and x = -1.

Example 2: Solving Absolute Value Inequalities

Solve $|x+2| \leq 5$:

Solution:

$$-5 \le x + 2 \le 5 \implies -7 \le x \le 3.$$

The solution is $-7 \le x \le 3$.

Example 3: Absolute Value Word Problem

A car travels in two directions from its starting point, 7 miles north and 3 miles south. What is its net displacement and total distance traveled?

Solution:

- Net Displacement: $|7-3|=4\,\mathrm{miles}$ (north).
- Total Distance: 7 + 3 = 10 miles.

Example 4: Absolute Value Inequalities

Solve |2x + 1| > 5.

Solution:

Split into two cases:

$$2x + 1 > 5$$
 or $2x + 1 < -5$.

Solve each:

$$2x > 4 \implies x > 2$$
 and $2x < -6 \implies x < -3$.

The solution is $x \in (-\infty, -3) \cup (2, \infty)$.

5. Functions and Their Graphs

A **function** is a relationship where each input x maps to exactly one output y.

Example 1: Linear Function

Graph f(x) = 2x + 1:

Table of values:

$$x=-1, \quad f(-1)=2(-1)+1=-1.$$
 $x=0, \quad f(0)=2(0)+1=1.$ $x=1, \quad f(1)=2(1)+1=3.$

Plot points (-1,-1), (0,1), (1,3), and connect them.

Example 2: Quadratic Function

Graph $f(x)=x^2-4x+3$:

- Factorize: f(x) = (x 1)(x 3).
- Roots: x = 1, 3.
- Vertex: $x=\frac{-b}{2a}=\frac{4}{2}=2$, $f(2)=2^2-4(2)+3=-1$. Plot points and sketch the parabola.

Example 3: Piecewise Function

A piecewise function is defined as:

$$f(x) = egin{cases} x^2, & ext{if } x \geq 0, \ -x, & ext{if } x < 0. \end{cases}$$

Sketch the graph:

- For $x \geq 0$, plot $y = x^2$ (a parabola).
- For x < 0, plot y = -x (a line).

Example 4: Exponential Function

Graph $f(x) = 2^x$:

• $f(-2) = \frac{1}{4}$, $f(-1) = \frac{1}{2}$, f(0) = 1, f(1) = 2, f(2) = 4.

The graph is an increasing curve passing through (0,1) and approaching 0 as $x \to -\infty$.

6. Displacement Function

Displacement functions are often polynomial functions describing motion over time.

Example: Velocity from Displacement

Given $s(t) = t^3 - 6t^2 + 9t$:

• Displacement at t=2:

$$s(2) = 2^3 - 6(2^2) + 9(2) = 8 - 24 + 18 = 2.$$

• Velocity is the derivative $v(t)=s^{\prime}(t)=3t^2-12t+9$. At t=2:

$$v(2) = 3(2^2) - 12(2) + 9 = 12 - 24 + 9 = -3.$$

Example 2: Acceleration from Velocity

Given $v(t) = t^2 - 4t + 3$, find the acceleration a(t):

$$a(t) = v'(t) = 2t - 4.$$

At t = 3:

$$a(3) = 2(3) - 4 = 6 - 4 = 2 \,\mathrm{m/s}^2$$
.

7. Slope

The slope measures the steepness and direction of a line.

Example: Parallel and Perpendicular Slopes

- Parallel lines have equal slopes: $m_1 = m_2$.
- Perpendicular lines have slopes that are negative reciprocals: $m_1 \cdot m_2 = -1$.

Find the slope of the line perpendicular to y=3x+5:

The slope of the given line is m=3. A perpendicular slope is $m=-\frac{1}{3}$.

Example 3: Horizontal and Vertical Lines

- ullet A horizontal line has slope m=0 and equation y=c.
- A vertical line has undefined slope and equation x = c.

Find the equations of the lines through (3,5):

- Horizontal: y = 5.
- Vertical: x=3.

8. Equation of a Line

Lines can be expressed in various forms:

- Slope-intercept form: y = mx + b.
- Point-slope form: $y y_1 = m(x x_1)$.
- Standard form: Ax + By = C.

Example: Finding an Equation

Find the equation of a line passing through (2,3) with slope m=-2:

Using point-slope form:

$$y-3=-2(x-2) \implies y=-2x+4+3 \implies y=-2x+7.$$

Example: Converting Between Forms

Convert 2x + 3y = 6 to slope-intercept form:

$$3y=-2x+6 \implies y=-rac{2}{3}x+2.$$

Example 4: Finding Intersection of Two Lines

Find the intersection of y=2x-3 and y=-x+4:

Solution:

Set the equations equal:

$$2x-3=-x+4 \implies 3x=7 \implies x=rac{7}{3}.$$

Substitute $x = \frac{7}{3}$ into y = 2x - 3:

$$y=2\left(rac{7}{3}
ight)-3=rac{14}{3}-3=rac{5}{3}.$$

The intersection point is $(\frac{7}{3}, \frac{5}{3})$.

Thanks for lessening ..

Any questions?