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1. General Concepts
Mathematics is built on fundamental operations and principles used in solving equations, analyzing

structures, and modeling problems.

Example 1: Solving an Equation

Solve b + 3 = 18.

Solution:

br+3=18 — d5z=18-3 — Sz =15 — =z = 3.

Example 2: Simplifying Expressions
Simplify 2(z + 3) + 4(z — 2).

Solution:

2¢ +6 +4xr — 8 = 6 — 2.



Example 3: Solving an Equation with Fractions

SDWE% | ‘1; = b.

Solution:
1. Find the least common denominator (LCD) of 2 and 3, which is 6.

2. Multiply through by 6 to eliminate fractions:

6-% | 6-%26-5 — 3z + 2z = 30.

3. Combine terms:
or = 30 — x = 6.



Example 4: Word Problem with an Equation

A total of $50 is divided between two people. One person gets $10 more than the other. Find how
much each person receives.

Solution:

Let & be the amount the first person gets. Then the second person gets « - 10.

z+(x+10)=50 = 2z +10=50 — 2z =40 — =z = 20.

The first person gets $20, and the second person gets $30.



2. Coordinate System and Graph in the Plane

The coordinate plane consists of two axes: the &-axis (horizontal) and the y-axis (vertical). Points are

located using ordered pairs (z, y).

Example 1: Plotting Points

Plot (—2,4), (0,0), and (3, —5):
e (—2,4): Move 2 units left and 4 units up.
e (0,0): Origin, no movement needed.

e (3, —5): Move 3 units right and 5 units down.



Example 2: Finding Distance Between Two Points

The distance d between two points (z1,y1) and (x2,y2) is:

d=/(zs — 21)%+ (g2 — 11)%

Find the distance between (1, 2) and (4, 6):

d=+(4-1)2+ (6 2)2=+32+42=19116=+25=5.




Example 3: Midpoint Formula

The midpoint of a line segment joining (x1, y1) and (22, y2) is:

T+ x
M:(l{ Eyliyi)'

2 72

Find the midpoint of the segment joining (1,4) and (—3, 6):

M:(“é 3)14;6):(?211_20):( 1.5).

Example 4: Equation of a Circle

The equation of a circle with center (h, k) and radius r is:
( — h) + (y — k)2 = 2.
Find the equation of a circle with center (2, —3) and radius 5:

(z —2)* + (y + 3)° = 25.



3. Inequalities

Inequalities describe relationships between numbers or expressions. Solutions are often intervals or

sets of numbers.

Example 1: Solving a Linear Inequality

Solve 3z + 2 < &.

Solution:

Jr+2<8 —= 3r <6 = zx < 2.

The solution is & < 2.



Example 2: Graphing Inequalities on a Number Line
Graph the inequality z > —1:
* Opencircle at —1 (not included).

* Shade all points to the right of —1.

Example 3: Systems of Inequalities

Solvex +y <4dandzx —y > 1.

Graph each inequality in the coordinate plane and find the overlap.



Example 4: Compound Inequalities

Solve2 < 3¢ — 4 < 8.

Solution:

Break it into two inequalities:

1. 2 < 3z — 4

2. 3¢z — 4 < &:

Combine the results: 2 < & < 4.
The solutionis ¢ € (2, 4].

6 <3z — x= > 2.

3r <12 — x < 4.



Example 5: Graphing Systems of Linear Inequalities
Graphy > 2z — landy < —z + 3.
e Fory > 2z — 1, graph the line y = 2z — 1 with a dashed line and shade above.

e Fory < —x + 3, graph the line y = —x 4 3 with a solid line and shade below.

The solution is the overlapping shaded region.



4. Absolute Value or Magnitude

Absolute value measures the distance from zero, irrespective of direction.

Example 1: Solving Absolute Value Equations
Solve [3z — 4| =T:
Solution:
3 —4=7 or 3z—-4=-T.

11
3:1::11:::&:1323, 3r=-3 — == 1.

The solutionsarexr = =+ andx = —1.



Example 2: Solving Absolute Value Inequalities

Solve |z + 2| < 5:

Solution:

The solutionis —7 < = < 3.



Example 3: Absolute Value Word Problem

A car travels in two directions from its starting point, 7 miles north and 3 miles south. What is its net

displacement and total distance traveled?
Solution:
e Net Displacement: |7 — 3| = 4 miles (north).

e Total Distance: 7 + 3 = 10 miles.



Example 4: Absolute Value Inequalities

Solve |2z + 1| > 5.
Solution:

Split into two cases:

20 +1>5 or 22+ 1< —5.

Solve each:

27 >4 — r>2 and 2z < 6 — 1 < —3.

The solutionis z € (—o00, —3) U (2, 00).



5. Functions and Their Graphs

A function is a relationship where each input  maps to exactly one output y.

Example 1: Linear Function
Graph f(z) = 2z + 1:

e Table of values:

Plot points (—1, —1), (0,1), (1, 3), and connect them.



Example 2: Quadratic Function

Graph f(z) = z* — 4z + 3:
e Factorize: f(z) = (z — 1)(z — 3).
e Roots:x =1,3.

o Vertexz = =3=27F(2)=22-4(2)+3=-1

Plot points and sketch the parabola.



Example 3: Piecewise Function

A piecewise function is defined as:

Sketch the graph:

e Forx = 0, ploty = x° (a parabola).

e Forx < 0, ploty = —x (aline).



Example 4: Exponential Function

Graph f(x) = 2%
P2 =L F(1)=1f0) =1 f(1) =2 f(2) =4

The graph is an increasing curve passing through (0, 1) and approaching 0 as  —» —oc.



6. Displacement Function

Displacement functions are often polynomial functions describing motion over time.

Example: Velocity from Displacement
Given s(t) = t* — 6t* + 9¢:
* Displacement att = 2:
§(2) =2° - 6(2°) +9(2) =8 — 24 + 18 = 2.
e Velocity is the derivative v(t) = s'(t) = 3t — 12t + 9. Att = 2:

v(2) =3(2°) —12(2) +9=12 - 24+ 9 = 3.



Example 2: Acceleration from Velocity

Given v(t) = t* — 4t + 3, find the acceleration a(%):
a(t) =v'(t) = 2t — 4.
Att = 3:

a(3)=2(3) -4=6-4=2m/s".



1. Slope

The slope measures the steepness and direction of a line.

Example: Parallel and Perpendicular Slopes

e Parallel lines have equal slopes: Ty = myo.

* Perpendicular lines have slopes that are negative reciprocals: 1 - Mg =

Find the slope of the line perpendicular to y = 3 -+ 5:

L=

The slope of the given line is m = 3. A perpendicular slope is m =

1.



Example 3: Horizontal and Vertical Lines

* A horizontal line has slope m = 0 and equation y = ¢.

* A vertical line has undefined slope and equation £ = c.

Find the equations of the lines through (3, 5):
e Horizontal: y = 5.

e \Vertical: # = 3.



8. Equation of a Line
Lines can be expressed in various forms:
e Slope-intercept form: y = mx + b.
e Point-slope form:y — y; = m(z — x1).

e Standard form: Az + By = C.

Example: Finding an Equation

Find the equation of a line passing through (2, 3) with slope m = —2:

Using point-slope form:

y—-3=-2x2) —= y= 2zx+4+3 — y=

2r + 7.



Example: Converting Between Forms

Convert 2z + 3y = 6 to slope-intercept form:

2
Jy=-2x+6 = y= §m+2.



Example 4: Finding Intersection of Two Lines

Find the intersection of y = 2z — 3 and y =
Solution:

Set the equations equal:

Substitute & = ,zi intoy = 2z — 3:

The intersection point is (%, %)

T + 4:
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Inequality: y > 2x + 1

y=2x+1
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Graph of Absolute Value: y = |x|
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= Thanks for lessening ..

Any questions!?
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