

Mathematics and Biostatistics

First Stage

LECTURE 2

Inequality and Absolute Value or Magnitude

BY

Asst. Lecturer Sajjad Ibrahim Ismael

2024-2025

Inequality and Absolute Value or Magnitude

Inequality involves comparing two quantities using symbols such as >, <, \ge , or \le .

Absolute Value or **Magnitude** refers to the non-negative value of a number or expression, regardless of its sign. It is often denoted by two vertical bars, e.g., |x|, and represents the distance of a number from zero on the number line.

Properties of Absolute Value in Inequalities

- 1. $|x| \ge a$:
 - This means $x \leq -a$ or $x \geq a$, where $a \geq 0$.
- 2. $|x| \le a$:
 - This means $-a \le x \le a$, where $a \ge 0$.

Example 1: Solving |x|>5

The inequality $\left|x\right|>5$ means the values of x are more than 5 units away from zero. This can be expressed as:

$$x < -5$$
 or $x > 5$

Solution:

• The solution set is $x \in (-\infty, -5) \cup (5, \infty)$.

Example 2: Solving $|x+2| \leq 3$

The inequality $|x+2| \leq 3$ means the expression x+2 is within 3 units of zero. This can be rewritten as:

$$-3 \le x + 2 \le 3$$

Solution:

Subtract 2 from all sides:

$$-3-2 \leq x \leq 3-2$$
 $-5 \leq x \leq 1$

• The solution set is $x \in [-5,1]$.

Example 3: Geometric Interpretation of |x| < 4

The inequality |x| < 4 means x is less than 4 units away from zero. The solution is the interval:

$$x\in (-4,4)$$

OTHER EXAMPLES

Example 1: Solving |x| < 7

The inequality |x| < 7 means x is less than 7 units away from 0. Rewrite it as:

$$-7 < x < 7$$

Solution:

• The solution set is $x \in (-7,7)$.

Example 2: Solving $|x-3| \geq 4$

The inequality $|x-3| \geq 4$ means the distance between x and 3 is at least 4. Rewrite it as:

$$x-3 \leq -4$$
 or $x-3 \geq 4$

Solution:

• For $x - 3 \le -4$:

$$x \leq -1$$

• For $x-3 \geq 4$:

$$x \geq 7$$

• The solution set is $x \in (-\infty, -1] \cup [7, \infty)$.

Example 3: Solving $|2x+1| \leq 5$

The inequality $|2x+1| \leq 5$ means the expression 2x+1 lies between -5 and 5. Rewrite it as:

$$-5 \le 2x + 1 \le 5$$

Solution:

1. Subtract 1 from all sides:

$$-5-1 \leq 2x \leq 5-1$$
 $-6 \leq 2x \leq 4$

2. Divide all sides by 2:

$$-3 \le x \le 2$$

• The solution set is $x \in [-3, 2]$.

Example 4: Solving |x+4|>6

The inequality |x+4|>6 means the expression x+4 is more than 6 units away from 0. Rewrite it as:

$$x + 4 < -6$$
 or $x + 4 > 6$

Solution:

• For x + 4 < -6:

$$x < -10$$

• For x + 4 > 6:

• The solution set is $x \in (-\infty, -10) \cup (2, \infty)$.

Example 5: Solving |3x-2|<8

The inequality |3x-2| < 8 means 3x-2 lies within 8 units of 0. Rewrite it as:

$$-8 < 3x - 2 < 8$$

Solution:

1. Add 2 to all sides:

$$-8 + 2 < 3x < 8 + 2$$

 $-6 < 3x < 10$

2. Divide all sides by 3:

$$-2 < x < \frac{10}{3}$$

• The solution set is $x \in (-2, \frac{10}{3})$.

Example 6: Solving $|x| \geq 9$

The inequality $|x| \geq 9$ means x is at least 9 units away from 0. Rewrite it as:

$$x \leq -9$$
 or $x \geq 9$

Solution:

• The solution set is $x \in (-\infty, -9] \cup [9, \infty)$.

Thanks for lessening ..

Any questions?