Terzaghi Bearing-Capacity Equation
One of the early sets of bearing-capacity equations was proposed by Terzaghi (1943) as shown bellow:-
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Terzaghi Equation (1843)
q, — ¢N.+gN, + %yBNy (continuous or strip foundation) (3.3)

where
¢’ = cohesion of soil
v = unit weight of soil
q = yDy
N, Nq. Ny = bearing capacity factors that are nondimensional and are functions only of

the soil friction angle ¢’
The bearing capacity factors N, N,. and N, are defined by
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where K, = passive pressure coefficient.
The variations of the bearing capacity factors defined by Eqgs. (3.4). (3.5). and (3.6)
are given in Table 3.1.

Where N¢, N4, and N are Terzaghi factors, S; and S, shape factors, B and D are the width and depth of
foundation respectively. g~ is an overburden pressure at the base of footing.



By substituting S¢ and S, in the above equation, we obtain:-
qu=CN¢+q Ngy+0.5yBN,
qu =1.3CN:+q N, +0.3yBN,,

qu=1.3CN;+q N, + 0.4YyBN,,

( for strip footing)

(round footing)

(Square footing)

Table 3.7 Terzaghi’s Bearing Capacity Factors—Eqs. (3.4), (3.5), and (3.6) a From

Kumbhojkar (1993)

L3 N, Nq Nra @' N, N, Nva
0 5.70 1.00 0.00 26 27.09 14.21 9.84
1 6.00 1.10 0.01 27 20.24 15.90 11.60
2 6.30 1.22 0.04 28 31.61 17.81 13.70
3 6.62 1.35 0.06 29 34.24 19.98 16.18
4 6.97 1.49 0.10 30 37.16 22.46 19.13
5 7.34 1.64 0.14 31 40.41 25.28 22.65
6 7.73 1.81 0.20 32 44.04 28.52 26.87
7 8.15 2.00 0.27 33 48.09 32.23 31.94
8 8.60 2.21 0.35 34 52.64 36.50 38.04
9 9.09 2.44 0.44 35 57.75 41.44 45.41

10 9.61 2.69 0.56 36 63.53 47.16 54.36

11 10.16 2.98 0.69 37 70.01 53.80 65.27

12 10.76 3.29 0.85 38 77.50 61.55 78.61

13 1141 3.63 1.04 39 85.97 70.61 95.03

14 12.11 4.02 1.26 40 95.66 81.27 115.31

15 12.86 445 1.52 41 106.81 93.85 140.51

16 13.68 4.92 1.82 42 119.67 108.75 171.99

17 14.60 545 2.18 43 134.58 126.50 211.56

18 15.12 6.04 2.59 44 151.95 147.74 261.60

19 16.56 6.70 3.07 45 172.28 173.28 325.34

20 17.69 7.44 3.64 46 196.22 204.19 407.11

21 18.92 8.26 4.31 47 224.55 241.80 512.84

22 20.27 0.19 5.09 48 258.28 287.85 650.67

23 21.75 10.23 6.00 49 208.71 344.63 831.99

24 23.36 11.40 7.08 50 347.50 415.14 1072.80

25 25.13 12.72 8.34

*From Kumbhojkar (1993)

Factor of Safety

Calculating the gross allowable load-bearing capacity of shallow foundations requires the
application of a factor of safety (FS) to the gross ultimate bearing capacity, or
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Modification of Bearing Capacity Equations for Water Table
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Equations (3.3) and (3.7) through (3.11) give the ultimate bearing capacity, based on the assumption that
the water table is not existed. However, if the water table is close to the foundation, some modifications
of the bearing capacity equations will be necessary. (See Figure 3.6.)

Case I. If the water table is located so that 0 = D, = D, the factor g in the bearing
capacity equations takes the form

q = effective surcharge = Dy + Dy(Yeat — Yuo) (3.16)
where
Ysa = saturated unit weight of soil
Y. = unit weight of water

Also, the value of 7 in the last term of the equations has to be replaced by ¥' = Yo — Yoo

Case Il. For a water table located so that 0 = d = B,
q = yDy (3.17)

In this case, the factor vy in the last term of the bearing capacity equations must be replaced
by the factor
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Case lll. When the water table is located so that d > B, the water will have no effect on the
ultimate bearing capacity.

Example 3.1. A square foundation is 2™ * 2" in plan. The soil supporting the foundation has a
friction angle @ = 25°f and € = 20 KN/m2The unit weight of soil, is y = 16.5KN/m3. Determine
the allowable gross load on the foundation with a factor of safety (FS) of 3. Assume that the
depth of the foundation is 1.5 m and that general shear failure occurs in the soil.

Solution:

Ultimate bearing capacity may be obtained by general Terzaghi’s Equation for square footing:-

qu =1.3CN¢ +qN, + 0.4yBN,,
For @ = 25°
N, = 25.13, N, =12.72, N, =8.34

qy =1.3+x20%25.13+1.5%¥16.5%12.72+0.4%x16.5%x2%8.34=1,078KN/m2



qan = 2 = 227 = 359.4KN/m2

Thus the total allowable gross load, Q = 359.4 x 22 = 1437KN

Example 2. Compute the allowable bearing pressure using the Terzaghi equation for the footing
and soil parameters shown in the figure. Use a safety factor of 3 to obtain qa.

T
v I VRS
T ? = 17.30 kN/m?
! ¢ = 20°
D=l2m ¢ =20kPa
]
N. =177 ‘ N, =174 N, = 5.0
1. Find the bearing capacity S¢ = 13 sy = 0.8
qu=1.3CN;:+q N, +0.4YyBN,, (Square footing)
q,=1.3%20%x17.7+1.2%17.3%7.4+0.4%x17.3*B*5
=613.8+ 34.6B
o= "2 = 205+ 11.5B KN/m2

Assume B =1.5, q, = 222



The ultimate bearing capacity equations (3.3), (3.7), and (3.8) are for continuous, square,
and circular foundations only; they do not address the case of rectangular foundations
(0 < B/L < 1). Also, the equations do not take into account the shearing resistance
along the failure surface in soil above the bottom of the foundation (the portion of the fail-
ure surface marked as G/ and HJ in Figure 3.5). In addition, the load on the foundation
may be inclined. To account for all these shortcomings, Meyerhof (1963) suggested the

following form of the general bearing capacity equation:

gy = ¢'N.F F,yF,; + gN,F,FyF,; + 3yBN,E,F, F,,

In this equation:

¢’ = cohesion
q = effective stress at the level of the bottom of the foundation
v = unit weight of soil
B = width of foundation (= diameter for a circular foundation)
F, Fy, Fys = shape factors
oo Fyd = depth factors
F,, Fy, F,; = load inclination factors
N, Ny Ny = bearing capacity factors

Meyerhof Equation (1963) for shape, depth, and inclination factors.

Vertical load: qu = cNescd, + GNysqedg + 0.5yB'Nys,d,
Inclined load: qu = cN.d.i. + GN,d,i, + 0.5yB'N,d, i,

e™'¢ tan? (45 + 2)

N, = (N, — Dcotd
N, = (N, — Dtan (1.4¢)

(3:19)



Table 2.3 Bearing Capacity Factors

¢' Nc Nq N‘I d)’ Nc Nq N'y
0 5.14 1.00 0.00 26 22.25 11.85 12.54
1 5.38 1.09 0.07 27 23.94 13.20 14.47
2 5.63 1.20 0.15 28 25.80 14.72 16.72
3 5.90 1.31 0.24 29 27.86 16.44 19.34
4 6.19 1.43 0.34 30 30.14 18.40 22.40
5 6.49 1.57 0.45 31 32.67 20.63 25.99
6 6.81 U572 0.57 32 35.49 23.18 30.22
7 7.16 1.88 0.71 33 38.64 26.09 35.19
8 7:53 2.06 0.86 34 42.16 29.44 41.06
9 7.92 2.25 1.03 35 46.12 33.30 48.03
10 8.35 247 122 36 50.59 37.75 56.31
11 8.80 2.71 1.44 87 55.63 42.92 66.19
12 9.28 297 1.69 38 61.35 48.93 78.03
13 9.81 3.26 1.97 39 67.87 55.96 92.25
14 10.37 3:59 2.29 40 75.31 64.20 109.41
15 10.98 3.94 2.65 41 83.86 73.90 130.22
16 11.63 4.34 3.06 42 93.71 85.38 155.55
17 12.34 4.717 3.53 43 105.11 99.02 186.54
18 13.10 5.26 4.07 44 118.37 115.31 224.64
19 13.93 5.80 4.68 45 133.88 134.88 201-16
20 14.83 6.40 5.39 46 152.10 158.51 330.35
21 15.82 7.07 6.20 47 173.64 187.21 403.67
22 16.88 7.82 7.13 48 199.26 22231 496.01
23 18.05 8.66 8.20 49 229.93 265.51 613.16
24 19.32 9.60 9.44 50 266.89 319.07 762.89
25 20.72 10.66 10.88

Shape, depth, and inclination factors for the Meyerhof bearing-capacity equations



Table 3.4 Shape, Depth and Inclination Factors (DeBeer (1970); Hansen (1970); Meyerhof (1963);
Meyerhof and Hanna (1981})

Factor Relationship Refarance
sh F. =1+ (E)(ﬁ) DeBear (1970}
ape e LI\N. !
B
Fe=1 +(E)l,and='
B
F.FZ ]_D'4(E)
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DJ'
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Inclination Fi=Fg= (l - gﬂn) Meyerhof (1963); Hanna and

Meyerhof (1981)

£ = inclination of the load on the
foundation with respect to the vertical




Solve Example Problem 3.1 using Eq. (3.19).




Example 3.3

A square foundation (B X B) has to be constructed as shown in Figure 3.7. Assume
that y = 16.5 KN/, yq = 18.55 kN/m’, ¢’ = 34°, Dy =122 m, and D; = 0.61 m.
The gross allowable load, Q. with ES = 3 is 667.2 kN. Determine the size of the
footing. Use Eq. (3.19).

@
table

Figure 3.7 A square foundation

Solution
We have

5 667.2
G — % = 7 kN/m? (a)

From Eq. (3.19) (with ¢’ = 0), for vertical loading, we obtain

_Gu _ ] L
qall - FS - g(quFquqd .5 5‘}/ BN,),FYSF,Yd>

For ¢' = 34°, from Table 3.3, N, = 29.44 and N, = 41.06. Hence,

[l

B :
e~ Lk ztan ¢" =1+ tan 34 = 1.67

Il

B ,
oo =1~ O‘4<z> =1-04=06

Dy 4 1.05
Fy=1+2tang'(1 — sin (b’)ZFf: | +2tan34(1 — sin 34)ZE= | i
Fyd =1
and

g = (0.61)(16.5) + 0.61 (18.55 — 9.81) = 15.4 kN/m?



Eccentrically Loaded Foundations

In several instances, as with the base of a retaining wall, foundations are subjected to
moments in addition to the vertical load, as shown in Figure 3.13a. In such cases, the dis-
tribution of pressure by the foundation on the soil is not uniform. The nominal distribution
of pressure is
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Figure 3.13 Eccentrically loaded foundations



where

O = total vertical load
M = moment on the foundation

Figure 3.13b shows a force system equivalent to that shown in Figure 3.13a. The

distance
M
e=— (3.35)
Q
is the eccentricity. Substituting Eq. (3.35) into Eqgs. (3.33) and (3.34) gives
(¢] 6e
= —_— + i %
G = pr\1+ 5 (3.36)
and
-2 be
Q=g 1 5 (3.37)

Note that, in these equations, when the eccentricity e becomes B/6, gy, is zero. For
e = B[6, g, Will be negative, which means that tension will develop. Because soil cannot
take any tension, there will then be a separation between the foundation and the soil under-
lying it. The nature of the pressure distribution on the soil will be as shown in Figure 3.13a.

Ultimate Bearing Capacity under Eccentric
Loading—One-Way Eccentricity

Effective Area Method (Meyerhoff, 1953)

In 1953, Meyerhof proposed a theory that is generally referred to as the effective area method.
The following is a step-by-step procedure for determining the ultimate load that the
soil can support and the factor of safety against bearing capacity failure:

Step 1. Determine the effective dimensions of the foundation (Figure 3.13b):
B' = effective width = B — 2¢
L' = effective length = L
Note that if the eccentricity were in the direction of the length of the foun-
dation, the value of L' would be equal to L — 2e. The value of B” would
equal B. The smaller of the two dimensions (i.e., L.’ and B’) is the effective
width of the foundation.
Step 2. Use Eq. (3.19) for the ultimate bearing capacity:
gy = N B s+ gN Foda o+ %yB’NyFy,Fdew (3.40)
To evaluate F, Fy, and F,,, use the relationships given in Table 3.4 with
effective length and effective width dimensions instead of L and B, respec-
tively. To determine F4, Fy4, and F,4, use the relationships given in Table
3.4. However, do not replace B with B'.
Step 3. The total ultimate load that the foundation can sustain is
A ’
Q= et (3.41)
Y qu(B) (L)
where A" = effective area.
Step 4. The factor of safety against bearing capacity failure is

ult

FS =
Q




Example 3.5

A continuous foundation is shown in Figure 3.18. If the load eccentricity is 0.2 m,
determine the ultimate load, Q,,, per unit length of the foundation. Use Meyerhof’s
effective area method.

Solution
For ¢’ = 0, Eq. (3.40) gives

dFyi

Y ¥ Y

4 ; 1 sl
Gu =quququFqi+;'}’BNF F.

where ¢ = (16.5) (1.5) = 24.75 kN/m>.

Sand

¢’ = 40°
c’'=0
y = 16.5 kN/n

Figure 2.18 A continuous foundation with load
eccentricity

For &' = 40°, from Table 3.3, N, = 64.2 and N, = 109.41. Also,
B'=2-(2)02)=16m

Because the foundation in question is a continuous foundation, B'/L’ is zero. Hence,
F,=1F, = 1. FromTable 3.4,

E;=F. ;=1

aqi yi

, D,r 1.5
Ffa =1+ 2tan¢'(1 — sind»')‘—8;= 1 +0214 —2— = 1.16

P"yd =1
and
q., = (24.75)(64.2)(1)(1.16)(1)
+ <—i—)(l6.5)(1.6)(109.41)(1)(1)(1) = 3287.39 kN/m’
Consequently,

0., = (B)(1)(g.) = (1.6)(1)(3287.39) ~ 5260 kN %



Bearing Capacity—Two-way Eccentricity

Consider a situation in which a foundation is subjected to a vertical ultimate load Q,;, and
a moment M, as shown in Figures 3.19a and b. For this case, the components of the
moment M about the x- and y-axes can be determined as M, and M|, respectively. (See
Figure 3.19.) This condition is equivalent to a load Q,, placed eccentrically on the foun-
dation with x = ez and y = ¢; (Figure 3.19d). Note that

i 3.52
eg = (3.52)
? Qull
and
M
e, =— (3.53)
! Qull
If Q. is needed, it can be obtained from Eq. (3.41); that is,
Ouw = QLA

where, from Eq. (3.40),
qi, = C'NF FuF; + QN,;Fy,FpuF,; + 3yB'N,F, F,,F,;
and
A’ = effective area = B'L’

As before, to evaluate F,_, qu, and Fy-r (Table 3.4), we use the effective length L’ and
effective width B’ instead of L and B, respectively. To calculate F_,. F,,. and F,,;. we do
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Figure 2.19 Analysis of foundation with two-way eccentricity



Problems

3.1

w
J

3.6

38

39

For the following cases, determine the allowable gross vertical load-bearing capacity

of the foundation. Use Terzaghi’s equation and assume general shear failure in soil.
Use FS = 4.

Part B D; &' ¢ Y Foundation type
a. 1.22m  091m 25° 2875kN/m*> 17.29kN/m’ Continuous

b. 2m I m 30° 0 17 kN/m? Continuous

c. 3m 2m 30° 0 16.5kN/m*  Square

A square column foundation has to carry a gross allowable load of 1805 kN
(FS =3). Given: D;=15m, y=159kN/m’ ¢’ =34° and ¢’ = 0. Use
Terzaghi’s equation to determine the size of the foundation (B). Assume general
shear failure.

Use the general bearing capacity equation [Eq. (3.19)] to solve the following:

a. Problem 3.1a

b. Problem 3.1b

¢. Problem 3.1c

The applied load on a shallow square foundation makes an angle of 15° with the ver-
tical. Given: B =183m, Dy =09m, y = 18.08 kN/m3, ¢’ =25° and ¢’ =
23.96 kN/mzA Use FS = 4 and determine the gross allowable load. Use Eq. (3.19).
A column foundation (Figure P3.5) is 3m X 2m in plan. Given: Dy = 1.5m,
@' =25 ¢ =170 kN/mZ. Using Eq. (3.19) and FS = 3, determine the net
allowable load [see Eq. (3.15)] the foundation could carry.

For a square foundation that is B X B in plan, D; = 2 m: vertical gross allowable
load. @, = 3330kN, y = 16.5 kN/m3; @' = 30° ¢’ = 0; and FS = 4. Determine
the size of the foundation. Use Eq. (3.19).

e S ettt CERE T

An eccentrically loaded foundation is shown in Figure P3.8. Use FS of 4 and deter-
mine the maximum allowable load that the foundation can carry. Use Meyerhof’s ef-
fective area method.

Repeat Problem 3.8 using Prakash and Saran’s method.

3.10 For an eccentrically loaded continuous foundation on sand, given B = 1.8 m, D, =

0.9 m, &/B = 0.12 (one-way eccentricity), ¥ = 16 kN/m’, and ¢’ = 35°. Using the
reduction factor method, estimate the ultimate load per unit length of the foundation.

(Eccentricity X :

in one direction e,
b lenly) g m Y =17 kN/m?
08m I O fc'=0
g | e
; ‘L : I1.5m >< I.5m

A3 i ]

Centerline

Figure P3.8



