
Continuous footing design

A continuous footing imposed by 4 columns a, b, c and d, are loaded with 800 KN, 1000 kN, 1000 kN and 800 kN respectively with 4 m CC. The dimensions of each column are (500mm*500mm). The Allowable B.C is 200 kN/m^2 . $f_C = 35 \text{ Mpa}$, $f_V = 450 \text{ Mpa}$. A full design is required.

Solution

$$A = \frac{Q}{q_{all}} = \frac{Q_1 + Q_2 + Q_3 + Q_4}{q_{all}}$$

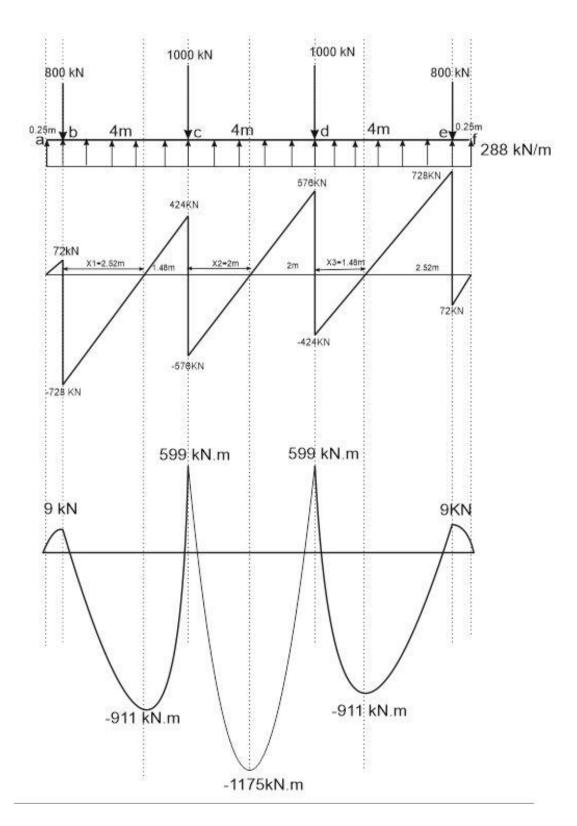
$$A = \frac{800 + 1000 + 1000 + 800}{200} = 18 \ m^2$$

$$18 = B * 12.5$$

B = 1.44 m

Let
$$L = 12 + 0.25 + 0.25 = 12.5m$$

$$B = \frac{A}{L} = \frac{18}{12.5} = 1.44 m,$$


Soil reaction check

Since the resultant is acting at the center of the footing, we can normally estimate the soil reaction as follows:-

$$q = \frac{3600}{12.5*1.44} = 200 \ kN/m2$$
 o.k

$$q = 200kN/m2 * 1.44m = 288 kN/m$$

Estimation of Shear and bending moment diagrams

 $M_{0-0.25}$

 $M_b = 288 \frac{x^2}{2} = 288 \frac{0.25^2}{2} = 9KN.m$

$M_{0.25-4.25}$

$$M_{at\,zero\,shear} = 288\frac{x^2}{2} - 800(x - 0.25)$$

$$M_{at\ zero\ shear} = 288 \frac{(2.52 + 0.25)^2}{2} - 800(0.25 + 2.52 - 0.25) = -911.1kN.m$$

$$M_{C} = 288 \frac{x^{2}}{2} - 800(x - 0.25) = 288 \frac{4.25^{2}}{2} - 800 * (4.25 - 0.25) = -599 \ kn.m$$

 $M_{4.25-8.25}$

$$M_{at\ zero\ shear} = 288\frac{x^2}{2} - 800(x - 0.25) - 1000(x - 4.25)$$

$$M_{at\,zero\,shear} = 288 \frac{(6.25)^2}{2} - 800(6.26 - 0.25) - 1000(6.25 - 4.25) = -1175 kN.\,m$$

Determination of footing Thickness

$$U = b_o d\emptyset(0.34) * 1000 \sqrt{f_C}$$

$$1000 = 4(0.5 + d)d * 0.85 * (0.34) * 1000\sqrt{35}$$

$$0.5848 = (0.5 + d)d$$
, d = 0.55 m,

Punching check

$$V_{max \, punching} = 0.33 \sqrt{fc} = 0.33 \sqrt{35} = 1.93 \, Mpa$$

$$V_{punching} = \frac{U}{b_0 d} = \frac{1000/1000}{4(0.5+0.55)0.55} = 0.43 Mpa$$
 O. K

Shear check

$$V_{max\,shear} = 0.17\sqrt{fc} = 0.17\sqrt{35} = 1\,Mpa$$

$$V_C = \frac{v}{Bd} = \frac{728/1000}{1.44*0.55} = 0.919 Mpa$$
 O. K

$$H = d + cover = 0.55 + 0.05 + 0.05 = 0.675m$$
 say $H = 0.7m$

Dnet= 0.7-0.075-0.05= 0.575 m

Negative Reinforcement design

$$Mu = \emptyset \rho b d^2 f_y (1 - \frac{\rho f_y}{1.7 f_c})$$

1.7 * 1175 = 0.85
$$\rho$$
 (1.44)(0.575)² * 1000 * 450(1 - $\frac{\rho$ 450}{17*35})

 $0.010968 = \rho \ (1-7.56 \rho)$, $\rho = 0.012$, $A_S = \rho Bd = 0.012*1.44*0.575 = 0.009936 \ mm^2$

 $A_S min = 0.0018Bd$

 $A_S min = 0.0018 * 1.44 * 0.575 = 0.0014904 m2$ o.k

No of Bars = $\frac{9936}{490}$ = 21, use 21 \emptyset 25mm/1.44m

Positive Reinforcement design

$$Mu = \emptyset \rho b d^2 f_y (1 - \frac{\rho f_y}{1.7 f_c})$$

$$1.7*599 = 0.85\rho (1.44)(0.575)^2*1000*450(1 - \frac{\rho 450}{1.7*35})$$

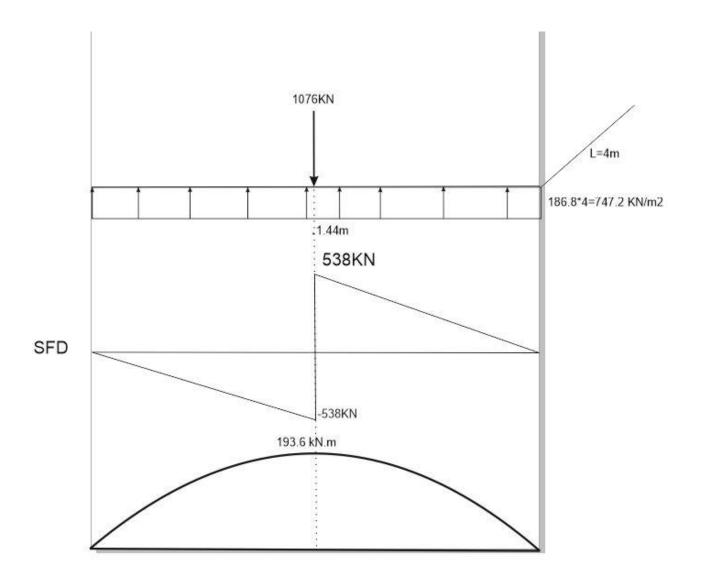
$$0.00559 = \rho (1 - 7.56\rho)$$
, $\rho = 0.006$,

$$A_S = \rho bd = 0.006 * 1.44 * 0.575 * 10^6 = 0.004968 \, mm^2$$

No of Bars =
$$\frac{4968}{490}$$
 = 10.13, use 11\(\tilde{2}5mm

Reinforcement in B direction

SFD & BMD


Factorization

Footing pressure = $1000 \, kN$, Soil reaction = $200*1.44*4=1152 \, KN/m2$

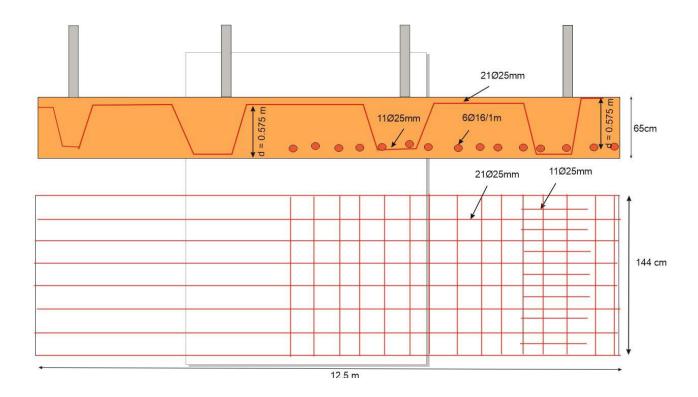
Average =
$$\frac{1000+1152}{2}$$
 = 1076 KN

Soil pressure =
$$200 * \frac{1076}{1152} = 186.8$$

Factored load=
$$1000 * \frac{1076}{1000} = 1076 = KN$$

Reinforcement design

$$Mu = \emptyset \rho b d^2 f_y (1 - \frac{\rho f_y}{1.7 f_c})$$


$$1.7*193.6 = 0.85\rho\ (4)(0.575)^2*1000*450(1-\frac{\rho450}{1.7*35})$$

$$0.00065 = \rho \ (1-7.56 \rho)$$
, $\rho = 0.0007$, $A_S = \rho bd = 0.0007 * 4 * 0.575 * $10^6 = 1610 \ mm^2$$

$A_S min = 0.0018Bd$

$$A_S min = 0.0018 * 4 * 0.575 = 0.00414 m2 > 0.001610 m2$$

No of Bars =
$$\frac{4140}{201}$$
 = 20.597, use $6\emptyset 16mm/1m$

