Single Footing design

1- Estimate the soil reaction (q)

$$U = 1.2 * D.L + 1.6 * L.L$$

 $q = \frac{U}{BL}$

- 2- Remove the eccentricity
- 3- Check the allowable or the ultimate bearing capacity

$$q_{u} = CN_{C}F_{Cs}F_{Cd}F_{Ci} + qN_{q}F_{qs}F_{qd}F_{qi} + 0.5\ddot{Y}B'N_{\gamma}F_{\gamma s}F_{\gamma d}F_{\gamma i}$$

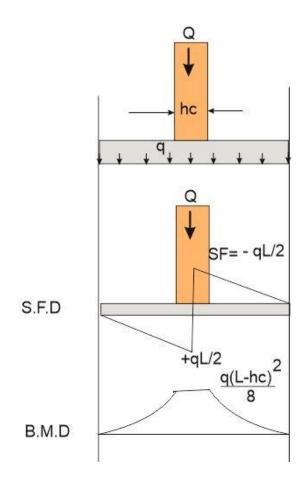
Or Terzaghi's Equation

$$q_u = CN_C + qN_q + 0.5\ddot{\Upsilon}B'N_{\gamma}$$

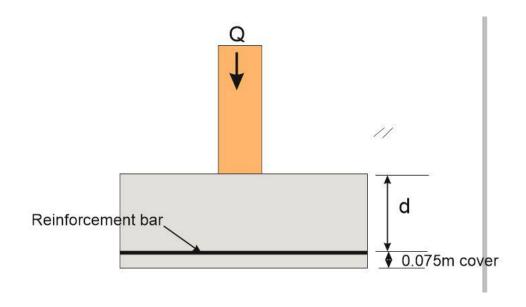
$$q_{all} = \frac{q_u}{Fs}$$
$$q_{all} \ge q$$

4- Check the total settlement

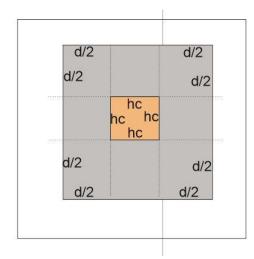
$$S_{T} = S_{C} + S_{S} \le 25mm$$

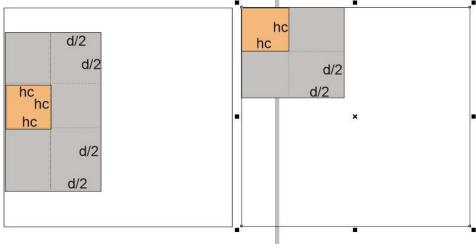

$$S_{C} = \frac{\Delta e}{1 + e_{o}}H$$

$$S_{C} = \frac{C_{C}H}{1 + e_{o}}log(\frac{\sigma + \Delta\sigma}{\sigma})$$


$$S_{S} = C_{\alpha}H * log\frac{t_{2}}{t_{1}}$$

5- Draw the shear and bending moment



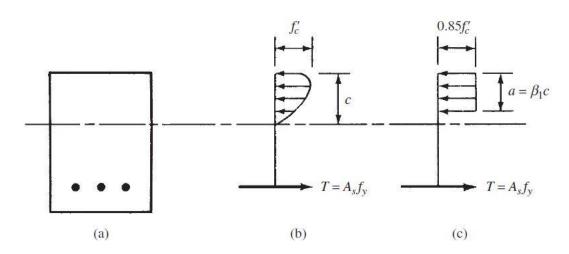


6- Estimate d

$$U = b \cdot d\emptyset(0.34) \sqrt{f'c}$$

$$b_O = 4d + 4h_C$$

$$b_O = 2d + 3h_C$$


$$b_o = d + 2h_C$$

Check of Minimum shear

$$\frac{v_U}{b \cdot d} \leq 0.17 \sqrt{f_c'}$$

Check of minimum of Punching

$$\frac{U}{b_0 d} \leq 0.33 \sqrt{f_c'}$$

$$a = \frac{A_S f_y}{0.85 f_C b} = \frac{\rho d f_y}{0.85 f_C}$$
(1)

$$\rho = \frac{A_S}{bd}$$


$$M_{U} = \emptyset A_{S} f_{y} (d - \frac{a}{2})$$
(2)
 $M_{U} = \emptyset \rho b d f_{y} (d - \frac{\rho d f_{y}}{1.7 f_{C}})$
 $M_{U} = \emptyset \rho b d^{2} f_{y} (1 - \frac{\rho f_{y}}{1.7 f_{C}})$ (3)

Minimum steal area

 $A_s(Minimum) = 0.0018$ Bd

Example1: Design of single footing with axial load

A square single footing is required to resist 1000KN axial dead load and 350 KN live load imposed from a square column of 400 mm*400mm. The soil physical and mechanical properties are presented in the figure. $f_c' = 30 \, Mpa$, $f_y = 430 \, Mpa$, $\omega = 3.5\%$. The primary and secondary settlements were occurred after 0.5 and 1 year respectively.

Solution:

Determination of saturated soil density

Assume
$$v_t=1m3$$
, $n=rac{v_v}{v_t}$, $0.35=rac{v_v}{1m^3}$, $v_s=0.65m^3$

$$G_s = \frac{w_s}{v_s \gamma_w}$$
 , $2.6 = \frac{w_s}{0.65*10 KN/m3}$, $W_s = 16.9 KN/m3$,

assume $\omega = 3.5\% = 0.035$

$$\gamma_{sat} = \frac{w_s + w_w}{v_t} = \frac{w_s + v_v * \gamma_w}{v_t} = \frac{16.9 + 0.35 * 10}{1} = 20.4 \ KN/m3$$

$$\tilde{\gamma} = \gamma_{sat} - \gamma_w = 20.4 - 10 = 10.4 KN/m3$$

$$\gamma_{wet} = \frac{w_s + w_w}{v_t} = \frac{w_s + w_s * \omega}{v_t} = \frac{w_s(1 + \omega)}{v_t} = \frac{16.9(1 + 0.035)}{1m3} = 17.5KN/m^3$$

Assume square footing of dimensions (B*L)

Terzaghi's Equation for square footing

$$q_U = 1.3CN_C + qN_q + 0.4\ddot{\Upsilon}BN_q$$

For
$$\emptyset=20^{\circ}$$
, $N_C=17.69$, $N_q=7.44$, $N_{\gamma}=3.64$

Since the water table is within the lower edge of the footing, therefore

$$q = 2m * 17.5KN/m3 = 35 \text{ KN/m2}$$

To determine $\ddot{\Upsilon}$, d = 0

$$\ddot{\Upsilon} = \dot{\gamma} + \frac{d}{B}(\gamma - \dot{\gamma}) = \dot{\gamma} = 10.4KN/m3$$

$$q_U = 1.3 * 20 * 17.69 + 35 * 7.44 + 0.4 * 10.4 * B * 3.64 = 720 + 15.1B$$

$$\frac{1.2*1000+1.6*350}{B^2} = 720 + 15.1B$$

$$1760 = 720B^2 + 15.1B^3$$

$$1760 = 720B^2 + 15.1B^3$$
 B=1.53m take B=1.55m

Settlement Check

1- Sc

After width of footing has been obtained, now we have to check the total settlement as follows:-

The overburden pressure to the center of the layer is

$$\sigma = \gamma_{wet} h_1 + \gamma h_2 = 17.5 * 2m + 10.4 * 2 = 55.8KN/m2$$

$$\Delta \sigma = \frac{Q}{(B+Z)(L+Z)} = \frac{1760}{(1.55+2)(1.55+2)} = 139KN/m2$$

$$S_C = \frac{C_C H}{1 + e_O} log(\frac{\sigma + \Delta \sigma}{\sigma})$$

$$e_0 = \frac{0.35}{0.65} = 0.538$$

$$S_C = \frac{0.3*4}{1+0.538} log(\frac{55.8+139}{55.8}) = 0.423m = 423mm$$
 too much

Now increase B step by step until the obtained the settlement value meets the allowable limits

Take take B = 13m

$$\Delta \sigma = \frac{Q}{(B+Z)(L+Z)} = \frac{1760}{(13+2)(13+2)} = 7.8KN/m2$$

$$S_C = \frac{C_C H}{1 + e_O} log(\frac{\sigma + \Delta \sigma}{\sigma})$$

$$e_0 = \frac{0.35}{0.65} = 0.538$$

$$S_C = \frac{0.3*4}{1+0.538} log(\frac{55.8+7.8}{55.8}) = 44.4mm$$
 this is in the range 25-50mm ok

2- Ss
$$C_{\alpha} = 0.002$$

$$C_C = \frac{e_O - e_p}{\log \frac{\sigma + \Delta \sigma}{\sigma}}$$

$$0.01 = \frac{0.538 - e_p}{\log^{\frac{71.4 + 67}{71.4}}}, \quad e_p = 0.534$$

$$C_{\alpha}' = \frac{C_{\alpha}}{1 + e_p} = \frac{0.002}{1 + 0.534} = 0.0013$$

$$S_S = C'_{\alpha}H * log \frac{t_2}{t_1} = 0.0013 * 4 * log \frac{1}{0.5} = 1.5mm$$

$$S_T = 44.4 + 1.5 = 45.9mm\ 0.k$$

Reinforced concrete design

$$U = b_{\circ}d\emptyset(0.34)\sqrt{f'c}$$

$$b_0 = 4 * 0.4 + 4d = 1.6 + 4d$$

$$1760 = (1.6 + 4d)d * 0.85 * 0.34 * 1000\sqrt{30}$$

$$1.11 = (1.6 + 4d)d$$
, $d = 0.36 \text{ m}$, $H = 0.36 + 0.075 = 0.435 \text{m} = 45 \text{ cm}$

$$Net d = 45 - 7.5 = 37.5 cm$$

Punching Check

$$V_{Max\ punching} = 0.33 \sqrt{fc} = 0.33 \sqrt{30} = 1.8\ Mpa$$

$$V_{punching} = \frac{u}{b_0 d} = \frac{1760/1000}{4(0.4+0.375)0.375} = 1.514\ Mpa < 1.8\ Mpa \text{ ok}$$

Chear Check

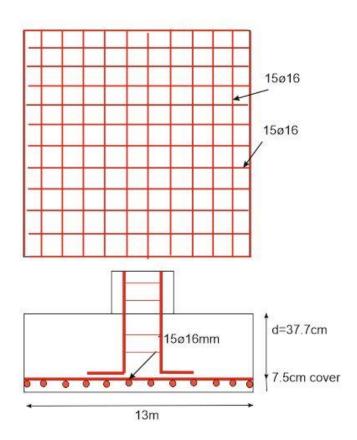
$$V_{C Max} = 0.17 \sqrt{fc} = 0.17 \sqrt{30} = 0.93 Mpa$$

 $V = \frac{V}{Ld} = \frac{880/1000}{13*0.375} = 0.18 Mpa < 0.93 Mpa ok$

$$M_U = \emptyset \rho b d^2 f_y \left(1 - \frac{\rho f_y}{1.7 f_c}\right) \dots (3)$$

$$2860*1.7 = 0.85 \rho * 13 * (0.375)^2 * 430 * 1000 \left(1 - \frac{\rho * 430}{1.7 * 30}\right)$$

$$0.0073 = \rho(1 - 8.4\rho)$$


$$\rho = 0.008$$

$$A_S = \rho bd = 0.008 * 13 * 0.375 = 0.039m2 = 39000mm^2$$

Min reinforcement = 0.0018Bd

 $Min\ reinforcement = 0.0018*13*0.375 = 0.008775m2 < 0.039m2\ ok$

$$1940\frac{16mm}{13m}$$
 or $150\frac{16mm}{1m}$ length

Reinforcement arrangement