Design of combined foundation Design a RC combined rectangular footings of two columns A and B carrie 600 KN and 800 KN respectively. The dimension of column A is 400 mm * 400 mm and column B 500 mm*500 mm. The center to center spacing between columns is 3.8m. The safe bearing capacity of a soil is 150 KN/m2. $f_c=30Mpa$, $and\ f_y=430\ Mpa$ ### **Solution:** Assume Weight of footing = (0.1)Q = 0.1*1400 KN = 140 KN Total Q = 1400 +140 = 1540KN Area of footing = $\frac{1540 \text{ KN}}{150 \text{KN/m2}}$ = 10.27 m² A=BL , if we assume B = 2 m, then $L= rac{10.27}{2}=5.135~m\cong5.2~m$ Then new $A = 5.2*2=10.4 \text{ m}^2$ Address the eccentricity ## **Soil reaction** $$I_L = \frac{BL^3}{12} = \frac{2(5.2)^3}{12} = 23.43m4$$ $$q = \frac{Q}{BL} + \frac{MX}{I_L}$$ $$q_2 = \frac{1400}{2*5.2} + \frac{380*2.6}{23.43} = 134.6 + 42.168 = 176.7KN/m2$$ $$q_1 = \frac{1400}{5.2 \cdot 2} - \frac{380 \cdot 2.6}{11.71} = 134.6 - 42.168 = 91.8 KN/m^2$$ $$q_2 > 150 \, Not \, ok$$ ## Let B=2.5m $$I_L = \frac{BL^3}{12} = \frac{2.5(5.2)^3}{12} = 29.29m4$$ $$q = \frac{Q}{BL} + \frac{MX}{I_B}$$ $$q_2 = \frac{1400}{2.5*5.2} + \frac{380*2.6}{29.29} = 107.692 + 33.731 = 141.423KN/m2$$ $$q_1 = \frac{1400}{5.2 \times 2} - \frac{380 \times 2.6}{11.71} = 107.692 - 33.731 = 73.961 KN/m^2$$ $$q_2 < 150 \ ok$$ This is based on the total settlement is within the allowable limits. ## Shear force and bending moment diagram #### Shear 0 - a $$V = q_1 x + \frac{(q_{2-q_1})X}{L} * \frac{X}{2} = q_1 x + \frac{(q_{2-q_1})X^2}{2L}$$ ### Shear a – b $$V = q_1 x + \frac{(q_{2-q_1)}x^2}{2B} - 600$$ ### Point of zero shear $$0 = q_1 x + \frac{(q_{2-q_1)}x^2}{2L} - 600$$ $$600 = 184.9x + \frac{(353.557 - 184.9)}{2*5.2}x^2$$, $600 = 184.9x + 16.217x^2$ $$x = 2.64m$$ # **Bending moment** ### Moment 0 - a $$M = q1\frac{x^2}{2} + \frac{(q2-q1)x}{B} * \frac{x}{2} * \frac{x}{3} = q1\frac{x^2}{2} + \frac{(q2-q1)x^3}{6B}$$ $$M_a = 185 * \frac{0.7^2}{2} + \frac{(353.557 - 184.9)0.7^3}{6*5.2} = 47.1 KN. m$$ ### Moment a - b $$M = q1\frac{x^2}{2} + \frac{(q2-q1)x^3}{6B} - 600 * (x - 0.7)$$ $$M_{max} = 184.9 * \frac{(2.64)^2}{2} + \frac{(353.557 - 184.9)(2.64)^3}{6*5.2} - 600 * (2.64 - 0.7) = -420 kN.m$$ $$M_b = 184.9 * \frac{(4.5)^2}{2} + \frac{(353.557 - 184.9)(4.5)^3}{6*5.2} - 600 * (4.5 - 0.7) = 84.7 \text{ kN.m}$$ # **Footing Thickness (d)** # $U = \mathbf{b} \cdot \mathbf{d} \emptyset (0.34) \sqrt{\mathbf{f'c}}$ #### Column1 $$800 = 4(d + 0.5)d * 0.85(0.34) * 1000 * \sqrt{30}$$ $$0.1263 = (d + 0.5)d$$, $d = 0.18m$ ### **Punching check** $$V_{max \, punching} = 0.33 \sqrt{fc} = 0.33 \sqrt{30} = 1.8 \, Mpa$$ $$V_{punching} = \frac{U}{b \cdot d} = \frac{800/1000}{4(0.5+0.18)0.18} = 1.633 \, Mpa \, \text{ok}$$ ## Column2 $$V_{punching} = \frac{V}{b \cdot d} = \frac{600/1000}{4(0.4+0.18)0.18} = 1.436 Mpa$$ ### O.K ## **Shear check** $$V_{cmax} = 0.17\sqrt{30} = 0.93 Mpa$$ $$V_C = \frac{V}{Bd} = \frac{560.5/1000}{2.5*0.18} = 1.24555 Mpa$$ ## Not good Take d = 0.25m $$V_C = \frac{V_{Ld}}{V_{Ld}} = \frac{560.5/1000}{2.5*0.25} = 0.8964 \, Mpa < V_{Cmax}$$ ok $$H = 0.25 + 0.075 = 0.325m$$, take H=35 cm $$dnet = 0.35 - 0.075 = 0.275m$$ # Reinforcement design of negative moment $$\boldsymbol{\rho} = \frac{A_S}{bd}$$ $$M_U = \emptyset \rho b d^2 f_y (1 - \frac{\rho f_y}{1.7 f_c})$$ $$1.7*420 = 0.85*\rho*2.5*0.275^{2}*1000*430\left(1 - \frac{\rho*430}{1.7*30}\right)$$ $$0.0103 = \rho(1 - 8.4\rho)$$ $$\rho = 0.0115$$ $$A_S = 0.0115 * 2.5 * 0.275 * 10^6 = 7906 mm^2$$ $$A_SMin = 0.0018Ld = 0.0018 * 2.5 * 0.275 * $10^6 = 1125 mm^2$ <7906mm2 ok$$ $$A_s \emptyset 16 = 201mm2$$ No of Bars = $$\frac{7906}{201}$$ = 39.33, use 40\016mm/2.5m ## Design of reinforcement at b $$\rho = \frac{A_S}{hd}$$ $$M_U = \emptyset \rho b d^2 f_y (1 - \frac{\rho f_y}{1.7 f_c})$$ 1.7 * 84.7 = 0.85 * $$\rho$$ * 2.5 * 0.275² * 1000 * 430 $\left(1 - \frac{\rho*430}{1.7*30}\right)$ $$0.00208 = \rho(1 - 8.4\rho)$$ $$\rho = 0.0021$$ $$A_S = 0.0021 * 2.5 * 0.275 * 10^6 = 1443 mm^2$$ # No of bars = 7.1, use $8\emptyset 16mm$ Now the solution should be repeated in the other direction