



# **Discrete Mathematics**

Lecture 7

**Functions II** 

By

Asst. Lect. Ali Al-Khawaja

### **Functions**

Definition: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.



### **Functions**

Definition: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.



## **Injective function**

**Definition:** A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection if it is one-to-one**.

**Alternative:** A function is one-to-one if and only if  $f(x) \neq f(y)$ , whenever  $x \neq y$ . This is the contrapositive of the definition.



**Not injective function** 

**Injective function** 

## **Surjective function**

<u>Definition</u>: A function f from A to B is called **onto**, or **surjective**, if and only if for every  $b \in B$  there is an element  $a \in A$  such that f(a) = b.

Alternative: all co-domain elements are covered



**Definition:** A function f is called a bijection if it is both one-to-one (injection) and onto (surjection).



#### Example 1:

- Let  $A = \{1,2,3\}$  and  $B = \{a,b,c\}$ 
  - Define f as
    - $1 \rightarrow c$
    - $2 \rightarrow a$
    - $3 \rightarrow b$
- Is f a bijection?
- ?

#### Example 1:

- Let  $A = \{1,2,3\}$  and  $B = \{a,b,c\}$ 
  - Define f as
    - $1 \rightarrow c$
    - $2 \rightarrow a$
    - $3 \rightarrow b$
- Is f a bijection?
- Yes. It is both one-to-one and onto.

#### Example 2:

• Define g: W  $\rightarrow$  W (whole numbers), where  $g(n) = \lfloor n/2 \rfloor$  (floor function).

• 
$$0 \rightarrow \lfloor 0/2 \rfloor = \lfloor 0 \rfloor = 0$$

• 
$$1 \rightarrow \lfloor 1/2 \rfloor = \lfloor 1/2 \rfloor = 0$$

• 
$$2 \rightarrow \lfloor 2/2 \rfloor = \lfloor 1 \rfloor = 1$$

• 
$$3 \rightarrow \lfloor 3/2 \rfloor = \lfloor 3/2 \rfloor = 1$$

• ...

• Is g a bijection?

#### Example 2:

- Define g: W  $\rightarrow$  W (whole numbers), where  $g(n) = \lfloor n/2 \rfloor$  (floor function).
  - $0 \rightarrow \lfloor 0/2 \rfloor = \lfloor 0 \rfloor = 0$
  - $1 \rightarrow \lfloor 1/2 \rfloor = \lfloor 1/2 \rfloor = 0$
  - $2 \rightarrow \lfloor 2/2 \rfloor = \lfloor 1 \rfloor = 1$
  - $3 \rightarrow \lfloor 3/2 \rfloor = \lfloor 3/2 \rfloor = 1$
- ...
- Is g a bijection?
  - No. g is onto but not 1-1 (g(0) = g(1) = 0 however 0 ≠ 1.

**Theorem:** Let f be a function f: A  $\rightarrow$  A from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

#### Assume

- → A is finite and f is one-to-one (injective)
- Is f an **onto function (surjection)**?

**Theorem:** Let f be a function f: A  $\rightarrow$  A from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

#### **Proof:**

- → A is finite and f is one-to-one (injective)
- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to. Since f: A → A the co-domain is covered thus the function is also a surjection (and a bijection)
- ← A is finite and f is an onto function
- Is the function one-to-one?

**Theorem:** Let f be a function f: A  $\rightarrow$  A from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

#### **Proof:**

- → A is finite and f is one-to-one (injective)
- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to. Since f: A → A the co-domain is covered thus the function is also a surjection (and a bijection)

#### ← A is finite and f is an onto function

- Is the function one-to-one?
- Yes. Every element maps to exactly one element and all elements in A are covered. Thus the mapping must be one-to-

**Theorem.** Let f be a function from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Please note the above is not true when A is an infinite set.

- Example:
  - $f: Z \rightarrow Z$ , where f(z) = 2 \* z.
  - f is one-to-one but not onto.
    - 1 → **2**
    - $2 \rightarrow 4$
    - $3 \rightarrow 6$
  - 3 has no pre-image.

### **Functions on real numbers**

**Definition**: Let f1 and f2 be functions from A to  $\mathbf{R}$  (reals). Then f1 + f2 and f1 \* f2 are also functions from A to  $\mathbf{R}$  defined by

- (f1 + f2)(x) = f1(x) + f2(x)
- (f1 \* f2)(x) = f1(x) \* f2(x).

#### **Examples:**

- Assume
  - f1(x) = x 1
  - $f2(x) = x^3 + 1$

#### then

- $(f1 + f2)(x) = x^3 + x$
- $(f1 * f2)(x) = x^4 x^3 + x 1$ .

# Any questions??