

P a g e | 1 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

ةـــيــــــذكـــال
مشتركة مع استاذ زائرمحاضرة

Lecture: (5)

Objects, Classes, and Relationships
Subject: Object oriented programming I
Class: Second
Dr. Maytham N. Meqdad , Lecturer Amal Khalil Awad

P a g e | 2 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Python Classes and Objects

Python Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:

 x = 5

==

Create Object

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

p1 = MyClass()

print(p1.x)

P a g e | 3 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

The __init__() Function

The examples above are classes and objects in their simplest form, and are not really useful in

real life applications.

To understand the meaning of classes we have to understand the built-in __init__() function.

All classes have a function called __init__(), which is always executed when the class is being

initiated.

Use the __init__() function to assign values to object properties, or other operations that are

necessary to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for name and age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

P a g e | 4 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

The __str__() Function

The __str__() function controls what should be returned when the class object is represented as a

string.

If the __str__() function is not set, the string representation of the object is returned:

Example

The string representation of an object WITHOUT the __str__() function:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1)

Example

The string representation of an object WITH the __str__() function:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __str__(self):

 return f"{self.name}({self.age})"

p1 = Person("John", 36)

print(p1)

P a g e | 5 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Object Methods

Objects can also contain methods. Methods in objects are functions that belong to the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()

Note: The self parameter is a reference to the current instance of the class, and is used to access

variables that belong to the class.

The self Parameter

The self parameter is a reference to the current instance of the class, and is used to access

variables that belongs to the class.

It does not have to be named self , you can call it whatever you like, but it has to be the first

parameter of any function in the class:

P a g e | 6 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Example

Use the words mysillyobject and abc instead of self:

class Person:

 def __init__(mysillyobject, name, age):

 mysillyobject.name = name

 mysillyobject.age = age

 def myfunc(abc):

 print("Hello my name is " + abc.name)

p1 = Person("John", 36)

p1.myfunc()

Modify Object Properties

You can modify properties on objects like this:

Example

Set the age of p1 to 40:

p1.age = 40

Delete Object Properties

You can delete properties on objects by using the del keyword:

Example

Delete the age property from the p1 object:

del p1.age

P a g e | 7 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Delete Objects

You can delete objects by using the del keyword:

Example

Delete the p1 object:

del p1

--

The pass Statement

class definitions cannot be empty, but if you for some reason have a class definition with no

content, put in the pass statement to avoid getting an error.

Example

class Person:

 pass

P a g e | 8 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Examples (python classes and objects)

1. Creating a Simple Class and Object:
class Dog:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def bark(self):

 print(f"{self.name} says Woof!")

Create objects of the Dog class

dog1 = Dog("Buddy", 2)

dog2 = Dog("Molly", 4)

Access object attributes and methods

print(f"{dog1.name} is {dog1.age} years old.")

dog2.bark()

2. Bank Account Class:

def deposit(self, amount):

 self.balance += amount

 def withdraw(self, amount):

 if amount <= self.balance:

 self.balance -= amount

 else:

 print("Insufficient funds.")

 def get_balance(self):

 return self.balance

Create a bank account object and perform transactions

account = BankAccount("12345", 1000)

account.deposit(500)

account.withdraw(200)

print(f"Account balance: ${account.get_balance()}")

P a g e | 9 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

3. Car Class with Inheritance:

class Vehicle:

 def __init__(self, make, model):

 self.make = make

 self.model = model

 def display_info(self):

 print(f"Make: {self.make}, Model: {self.model}")

class Car(Vehicle):

 def __init__(self, make, model, year):

 super().__init__(make, model)

 self.year = year

 def display_info(self):

 print(f"Make: {self.make}, Model: {self.model}, Year: {self.year}")

Create car objects and call methods

car1 = Car("Toyota", "Camry", 2022)

car2 = Car("Honda", "Civic", 2021)

car1.display_info()

car2.display_info()

4. Student Class with Multiple Objects:

class Student:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def display_info(self):

 print(f"Name: {self.name}, Age: {self.age}")

Create a list of student objects and display their information

students = [Student("Alice", 20), Student("Bob", 22), Student("Charlie", 19)]

for student in students:

 student.display_info()

P a g e | 10 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

5. Rectangle Class:

class Rectangle:

 def __init__(self, width, height):

 self.width = width

 self.height = height

 def area(self):

 return self.width * self.height

 def perimeter(self):

 return 2 * (self.width + self.height)

Create rectangle objects and calculate area and perimeter

rect1 = Rectangle(5, 3)

rect2 = Rectangle(8, 4)

print("Rectangle 1 - Area:", rect1.area(), "Perimeter:", rect1.perimeter())

print("Rectangle 2 - Area:", rect2.area(), "Perimeter:", rect2.perimeter())

6. Bank Customer Class with Account Management:

class BankCustomer:

 def __init__(self, name):

 self.name = name

 self.accounts = {}

 def add_account(self, account_name, balance):

 self.accounts[account_name] = balance

 def display_accounts(self):

 print(f"Accounts for {self.name}:")

 for account, balance in self.accounts.items():

 print(f"{account}: ${balance:.2f}")

Create a bank customer, add accounts, and display account information

customer = BankCustomer("Alice")

customer.add_account("Savings", 1000)

customer.add_account("Checking", 500)

customer.display_accounts()

P a g e | 11 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

7. Circle Class with Method Overriding:

import math

class Circle:

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return math.pi * self.radius ** 2

 def perimeter(self):

 return 2 * math.pi * self.radius

 def display_info(self):

 print(f"Circle - Radius: {self.radius:.2f}, Area: {self.area():.2f},

Perimeter: {self.perimeter():.2f}")

class ColoredCircle(Circle):

 def __init__(self, radius, color):

 super().__init__(radius)

 self.color = color

 def display_info(self):

 print(f"Colored Circle - Radius: {self.radius:.2f}, Area:

{self.area():.2f}, Perimeter: {self.perimeter():.2f}, Color: {self.color}")

Create circle objects and call methods

circle1 = Circle(5)

circle2 = ColoredCircle(3, "Red")

circle1.display_info()

circle2.display_info()

