
5202-4Study Year: 202

 مولعلا ةيلك

 يناربيسلا نملاا مولع مــــــــــســق
Cyber Security Department

Subject: Encryp/ng Data Using Stream Ciphers

Class: 2nd

Lecturer: Asst.Lect Mustafa Ameer Awadh

Lecture: (10)

P a g e | 2

Cyber Security Department
Lecture (10)
2nd Stage

Lecturer Name

Asst.Lect. Mustafa Ameer Awadh

Lecture: Encryp-ng Data Using Stream Ciphers

1. Introduc-on

Encryp(on is the cornerstone of modern data security. Stream ciphers are a type of
symmetric encryp(on designed for fast and efficient real-(me data protec(on. This
lecture will guide you through encryp(ng data using stream ciphers, from
understanding their components to implemen(ng them in real-world scenarios.

1.1 Learning Objec-ves

By the end of this lecture, you will:

• Understand the core principles of stream ciphers.

• Learn how to securely encrypt and decrypt data.

• Be able to implement a stream cipher using programming examples.

2. Overview of Stream Ciphers

2.1 What are Stream Ciphers?

• A stream cipher encrypts data one bit or byte at a (me using a key stream, a
pseudo-random sequence generated from a secret key.

• Commonly used in applica(ons like real-(me video streaming, VoIP, and
wireless communica(on.

P a g e | 3

Cyber Security Department
Lecture (10)
2nd Stage

Lecturer Name

Asst.Lect. Mustafa Ameer Awadh

2.2 Characteris-cs of Stream Ciphers

• High Speed: Suitable for encryp(ng large volumes of data.

• Simplicity: Easy to implement in both soKware and hardware.

• Small Memory Usage: Ideal for resource-constrained environments.

3. Components of a Stream Cipher

3.1 Key Stream Generator

The core of a stream cipher, responsible for producing a pseudo-random sequence
(key stream) from a secret key and an ini(aliza(on vector (IV).

3.2 XOR Opera-on

• Encryp(on: Ciphertext=Plaintext⊕Key StreamCiphertext=Plaintext⊕Key Str
eam

• Decryp(on: Plaintext=Ciphertext⊕Key StreamPlaintext=Ciphertext⊕Key St
ream

3.3 Ini-aliza-on Vector (IV)

• Ensures that even if the same key is reused, the resul(ng key stream is
unique.

• Must be random and unpredictable for each encryp(on session.

4. Steps to Encrypt Data Using a Stream Cipher

4.1 Key Genera-on

P a g e | 4

Cyber Security Department
Lecture (10)
2nd Stage

Lecturer Name

Asst.Lect. Mustafa Ameer Awadh

1. Use a secure random number generator (RNG) to create a secret key.

2. Generate an IV to ini(alize the cipher.

4.2 Key Stream Genera-on

• Use the secret key and IV as inputs to the key stream generator.

• Ensure the key stream is pseudo-random, long enough for the plaintext.

4.3 Encryp-ng the Data

• XOR the plaintext with the key stream bit-by-bit or byte-by-byte.

5. Prac-cal Implementa-on of Stream Cipher Encryp-on

5.1 Example 1: Basic Stream Cipher in Python

python

Copy code

import os

Func(on to generate a pseudo-random key stream

def generate_key_stream(key, iv, length):

 prng_state = (int.from_bytes(key, 'big') ^ int.from_bytes(iv, 'big')) % (2**32)

 key_stream = []

 for _ in range(length):

 prng_state = (1103515245 * prng_state + 12345) % (2**31)

P a g e | 5

Cyber Security Department
Lecture (10)
2nd Stage

Lecturer Name

Asst.Lect. Mustafa Ameer Awadh

 key_stream.append(prng_state & 0xFF) # Use only the lower 8 bits

 return bytes(key_stream)

Encrypt func(on

def encrypt(plaintext, key, iv):

 key_stream = generate_key_stream(key, iv, len(plaintext))

 ciphertext = bytes([pt ^ ks for pt, ks in zip(plaintext, key_stream)])

 return ciphertext

Decrypt func(on

def decrypt(ciphertext, key, iv):

 return encrypt(ciphertext, key, iv) # XOR is symmetric

Example usage

key = os.urandom(16) # 128-bit key

iv = os.urandom(8) # 64-bit IV

plaintext = b"Stream ciphers are secure and efficient!"

ciphertext = encrypt(plaintext, key, iv)

decrypted_text = decrypt(ciphertext, key, iv)

P a g e | 6

Cyber Security Department
Lecture (10)
2nd Stage

Lecturer Name

Asst.Lect. Mustafa Ameer Awadh

print(f"Plaintext: {plaintext}")

print(f"Ciphertext: {ciphertext}")

print(f"Decrypted: {decrypted_text}")

5.2 Example 2: Using ChaCha20 for Encryp-on

python

Copy code

from cryptography.hazmat.primi(ves.ciphers import Cipher, algorithms, modes

from os import urandom

key = urandom(32) # 256-bit key

nonce = urandom(12) # ChaCha20 requires a 96-bit nonce

plaintext = b"Encryp(ng data with ChaCha20 is simple!"

Encrypt

chacha = Cipher(algorithms.ChaCha20(key, nonce), mode=None)

encryptor = chacha.encryptor()

ciphertext = encryptor.update(plaintext)

Decrypt

P a g e | 7

Cyber Security Department
Lecture (10)
2nd Stage

Lecturer Name

Asst.Lect. Mustafa Ameer Awadh

decryptor = chacha.decryptor()

decrypted_text = decryptor.update(ciphertext)

print(f"Plaintext: {plaintext}")

print(f"Ciphertext: {ciphertext}")

print(f"Decrypted: {decrypted_text}")

6. Best Prac-ces for Stream Cipher Encryp-on

6.1 Use Secure RNGs

• Use cryptographically secure random number generators for keys and IVs.

• Avoid predictable RNGs like random in Python.

6.2 Rotate Keys and IVs

• Do not reuse the same key-IV pair for mul(ple encryp(ons.

6.3 Validate Key Stream Randomness

• Ensure that the key stream generator produces unbiased and unpredictable
sequences.

7. Common Applica-ons of Stream Ciphers

• Telecommunica-on: Encryp(ng voice and data in GSM (A5/1).

• Streaming Services: Securing video and audio streams.

P a g e | 8

Cyber Security Department
Lecture (10)
2nd Stage

Lecturer Name

Asst.Lect. Mustafa Ameer Awadh

• IoT Devices: Lightweight encryp(on for resource-constrained systems.

8. Conclusion

Stream ciphers provide efficient and secure encryp(on for real-(me applica(ons.
By following best prac(ces and leveraging modern algorithms like ChaCha20, you
can ensure strong protec(on for your data. Encryp(on using stream ciphers is not
only effec(ve but also straighrorward to implement in prac(cal scenarios.

