

Computer since

First Stage

Lec8

Plotting In Matlab

MS.c Mortada Sabri

MS.c Lubna Ali

Introduction

- MATLAB has an excellent set of graphic tools. Plotting a given data set or the results of

computation is possible with very few commands. You are highly encouraged to plot

mathematical functions and results of analysis as often as possible. Trying to understand

mathematical equations with graphics is an enjoyable and very efficient way of learning

mathematics. Being able to plot mathematical functions and data freely is the most important

step, and this section is written to assist you to do just that. Engineers use graphing techniques

to make the information easier to understand. With a graph, it is easy to identify trends, pick

out highs and lows, and isolate data points that may be measurement or calculation errors.

Graphs can also be used as a quick check to determine whether a computer solution is

yielding expected results.

➢ Basic Plotting

The basic MATLAB graphing procedure is to take a vector of x-coordinates, x = (x1; : : : ;

xN), and a vector of y-coordinates, y = (y1; : : : ; yN), locate the points (xi; yi), with i = 1; 2; : :

: ; n and then join them by straight lines. You need to prepare x and y in an identical array

form; namely, x and y are both row arrays or column arrays of the same length.

The MATLAB command to plot a graph is plot(x,y). The vectors x = (1; 2; 3; 4; 5; 6) and y =

(3;¡1; 2; 4; 5; 1) produce the picture shown in below.

>> x = [1 2 3 4 5 6];

>> y = [3 -1 2 4 5 1];

>> plot (x,y)

Note: The plot functions has different forms depending on the input arguments. If y is a

vector plot (y) produces a piecewise linear graph of the elements of y versus the index of the

elements of y. If we specify two vectors, as mentioned above, plot (x,y) produces a graph of y

versus x.

For example, to plot the function sin (x) on the interval [0, 2π], we first create a vector of x

values ranging from 0 to 2π, then compute the sine of these values, and finally plot the result:

>> x = 0:pi/100:2*pi;

>> y = sin(x);

>> plot(x,y)

Notes:

- 0:pi/100:2*pi yields a vector that

- starts at 0,

- takes steps (or increments) of π/100,

- stops when 2π is reached.

- If you omit the increment, MATLAB automatically increments by 1.

Note: The plot functions has different forms depending on the input arguments. If y is a

vector plot (y) produces a piecewise linear graph of the elements of y versus the index of the

elements of y. If we specify two vectors, as mentioned above, plot (x,y) produces a graph of y

versus x.

For example, to plot the function sin (x) on the interval [0, 2π], we first create a vector of x

values ranging from 0 to 2π, then compute the sine of these values, and finally plot the result:

>> x = 0:pi/100:2*pi;

>> y = sin(x);

>> plot(x,y)

Notes:

- 0:pi/100:2*pi yields a vector that

- starts at 0,

- takes steps (or increments) of π/100,

- stops when 2π is reached.

- If you omit the increment, MATLAB automatically increments by 1.

Suppose a set of time versus distance data were obtained through measurement. We can store

the time values in a vector called x (the user can define any convenient name) and the distance

values in a vector called y :

x = [0:2:18];

y = [0, 0.33, 4.13, 6.29, 6.85, 11.19, 13.19, 13.96, 16.33,18.17];

plot(x,y)

➢ Adding titles, axis labels, and annotations

Good engineering practice requires that we include axis labels and a title in our plot. The

following commands add a title, x - and y -axis labels, and a background grid:

plot(

x,y)

xlab

el('Ti

me,

sec')

ylab

el('D

istan

ce,

ft')

grid

on

These commands generate the plot in Figure below. As with any MATLAB commands, they

could also be combined onto one or two lines, separated by commas:

plot(x,y) , title('Laboratory

Experiment 1') xlabel('Time,

sec'), ylabel('Distance, ft'),

grid

➢ -Specifying line styles and colors

 By default, MATLAB uses line style and color to distinguish the data sets plotted in the

graph. However, you can change the appearance of these graphic components or add

annotations to the graph to help explain your data for presentation.

It is possible to specify line styles, colors, and markers (e.g., circles, plus signs, . . .) using the

plot command: Plot (x,y,'style_color_marker')

where style_color_marker is a triplet of values from Table below:

The following commands illustrate the use of line, color,

and mark styles: x = [1:10];

y = [58.5, 63.8, 64.2, 67.3, 71.5, 88.3, 90.1, 90.6, 89.5,90.4];
plot(x,y,':ok')

Plot the polynomial 𝑦 = 𝑥2 − 1 between x=0 and x=10 (using twenty points).

>>x=linspace(0,10,20); // or x=0:10/20:10;

>>y= x.^2-1;

>>plot(x,y)

