

Theory of structure

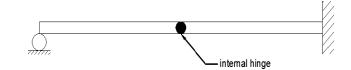
Stability and Determinacy of Structures L1

Assistant Lecturer Maryam Mohammed Al-aarajy

Stability and determinacy of structures

Beams

❖ Total equation of equilibrium of beam


$$\sum F_{\rm K} = 0$$

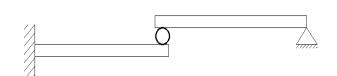
$$\sum F_{\rm F} = 0$$

$$\sum M = 0$$

❖ Equation of condition Internal hinge:-

$$\sum M = 0$$

$$C=1$$

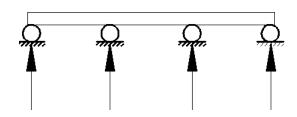

$$C = m - 1$$

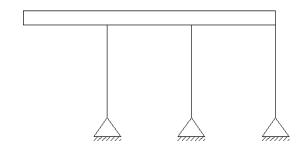
Roller:-

$$\sum M = 0$$

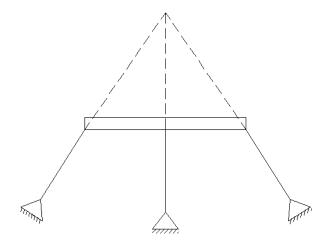
$$\sum F_{\rm K} = 0$$

$$C=2$$




Let r= No. of reaction

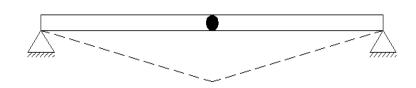
1- If
$$r < c+3$$
, unstable


2-
$$r = c+3$$
, determine if stable

- the structure is said to be unstable if one of the following facts couter
 - 1- r < c+3
 - 2- The reaction element constitutes a parallel force system.

3- The reaction element constitutes a concurrent force system.

4- Internal geometric instability:-


Example

r = 4

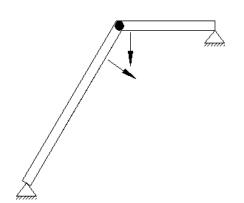
c = 1

r = c+3

4=4

The beam is unstable because the Internal geometric instability

Example

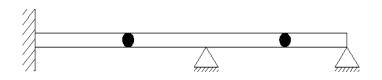

r = 4

c = m-1, c = 1

r = c+3

4=4

The beam is determiate if stable


Example

r=7

c=2

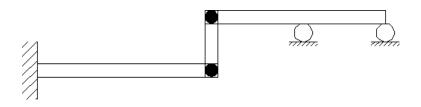
r>c+3

7>5

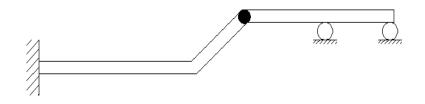
The beam is indeterminate 2nd degree if stable

Example

7>5


The beam is unstable

Examples:-


Beam	r	c	c+3	state	Stability & determinate.
	3	0	3	r=c+3	Stable & deter.
	4	0	3	r>c+3	Stable & indeter. First degree
	6	1	4	r>c+3	Stable &indeter. Second degree
	6	2	5	r>c+3	unstable
ann ann ann	3	0	3	r =c+3	unstable

Home Works

H.W1: Find the stability and determinacy of beam.

H.W2: Find the stability and determinacy of beam.

Stability and Determinacy of Trusses

b + r = unknown

j = equations

1- b + r < 2j, the truss is unstable

2- b + r = 2j, the truss is determinate if stable

3- b + r > 2j, the truss is indeterminate if stable

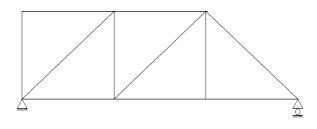
Let (m) equal to the degree of indeterminate m = (b + r) - 2i

b = No. of bars

r = No. of reactions

j = No. of joints

Examples: - Find the stability and determinacy of trusses below.

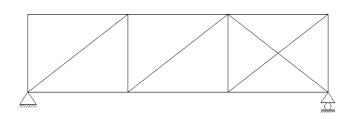

Ex1

$$r = 3, b = 11, j = 7$$

$$b+r = 14$$

$$2j = 14$$

$$b+r=2j$$

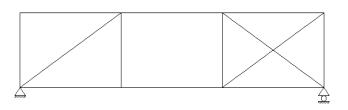

The truss is stable &determinate

Ex2

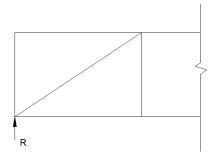
$$r = 3, b = 14, j = 8$$

$$b+r = 17$$

$$2j = 16$$


b+r>2j, the truss is stable& indeterminate 1^{st} degree

Ex3

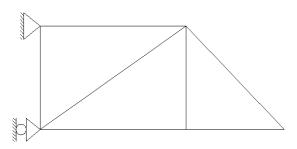

$$r = 3$$

$$b = 13$$

$$2j = 16$$

b+r = 2j, the truss is unstable because of $\sum F_y$ G 0, in this section

$$r = 3, b = 7, j = 5$$


$$b+r=10$$

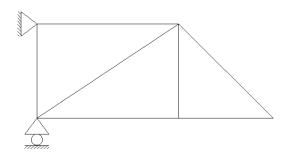
$$2 j = 10$$

$$b+r=2j$$

The truss is stable &

determinate

Ex5


$$r = 3, b = 7, j = 5$$

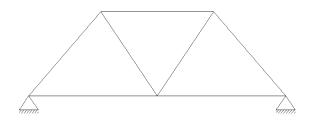
$$b + r = 10$$

$$2 j = 10$$

$$b+r=2j\\$$

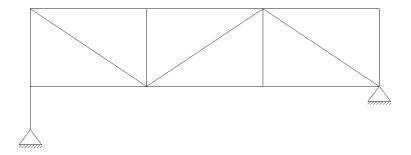
The truss is unstable

Ex6

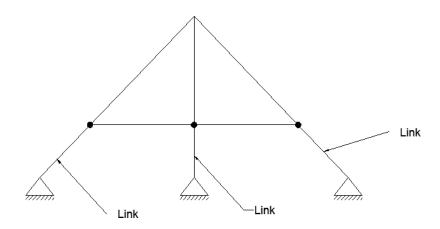

$$r = 4, b = 7, j = 5$$

$$b + r = 11$$

$$2 j = 10$$


$$b + r > 2j$$

The truss is stable & indeterminate 1st degree



Home works

H.W1

H.W2

