

Theory of structure

Stability and Determinacy of Structures L2

Assistant Lecturer Maryam Mohammed Al-aarajy

Stability and Determinacy of Frames

1- Open frames

r < C+3, unstable

r = C+3, determinate if stable

r > C+3, indeterminate if stable

Ex1:- Find the stability and determinacy of frame below

$$C_1 = m-1, C_1 = 2-1 = 1$$

$$C_2 = m-1, C_2 = 3-1 = 2$$

$$C = C_1 + C_2$$
, $C = 3$

$$r = 11$$

$$C + 3 = 6$$

r > C+3, the frame is stable& indeterminate 5th degree.

r > C+3, the frame is stable & indeterminate 1st degree.

r > C + 3, the frame is stable & indeterminate 2^{nd} degree.

The frame is unstable because of internal geometric instability

2- Closed Frames:-

3b+r < 3j+c, unstable

3b+r = 3j+c, determinate if stable

3b+r>3j+c, indeterminate if stable

Where,

3b+r = unknown

3j+c = equations

b = No. of members

r = No. of reactions

= No. of joints

Ex1:-

$$b = 10$$

$$r = 6$$

$$i = 9$$

$$3b+r = 36$$

$$3i+c = 27$$

3b+r > 3j+c, stable & indeterminate 9^{th} degree

3b+r > 3j+c, stable & indeterminate 12^{th} degree

3b+r > 3j+c, stable & indeterminate 6^{th} degree

3b+r > 3j+c, stable & indeterminate 10^{th} degree

3b+r > 3j+c, stable & indeterminate 9^{th} degree

Home work:

H.W1: Find the stability and determinacy of frame below

H.W2: Find the stability and determinacy of frame below

Stability and Determinacy of Composite Structure

Unknowns	Equations
1- Each truss member give one unknown	1- each member carry moment give (3 equations)
2- reactions	2- each joint connect truss members only give (2 equations)
3- each joint connect member carry moment give unknown in these equation (2*(m-1))	

Ex1:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(3*3) +0 = 9$$

Unknowns

$$1+3+(3*(2(2-1)))=10$$

Unknowns > Equations, Stable & indeterminate 1st degree

Ex2:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(4*3) +0 = 12$$

Unknowns

$$1+3+(3*(2(2-1)))+(2(3-1))=14$$

Unknowns > Equations, Stable & indeterminate 2nd degree

Ex3:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(2*3) + (3*2) = 12$$

Unknowns

$$9+6+0=15$$

Unknowns > Equations, Stable & indeterminate 2nd degree

Ex4:- Find the stability and determinacy of composite structure as shown below.

Solution:

Equations

$$(1*3) + (7*2) = 17$$

Unknowns

$$13+5+0=18$$

Unknowns > Equations, Stable & indeterminate 1st degree

H.w: Find the stability and determinacy of composite structure as shown below.

15

Asist Lecturer: Maryam Mohammed

AL- Mustaqbal University College