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CHPTER FOUR  
Fluid Dynamic 

4.1  Introduction 
In the process industries it is often necessary to pump fluids over long distances 

from storage to processing units, and there may be a substantial drop in pressure in both 
the pipeline and in individual units themselves. It is necessary, therefore, to consider the 
problems concerned with calculating the power requirements for pumping, with 
designing the most suitable flow system, with estimating the most economical sizes of 
pipes, with measuring the rate of flow, and frequently with controlling this flow at 
steady state rate. 

It must be realized that when a fluid is flowing over a surface o through a pipe, the 
velocity at various points in a plane at right angles to the stream velocity is rarely 
uniform, and the rate change of velocity with distance from the surface will exert a vital 
influence on the resistance to flow and the rate of mass or heat transfer. 
4.2  The Nature of Fluid Flow 

When a fluid is flowing through a tube or over a surface, the pattern of flow will 
vary with the velocity, the physical properties of fluid, and the geometry of the surface. 
This problem was first examined by Reynolds in 1883. Reynolds has shown that when 
the velocity of the fluid is slow, the flow pattern is smooth. However, when the velocity 
is quite high, an unstable pattern is observed in which eddies or small packets of fluid 
particles are present moving in all directions and at all angles to the normal line of flow. 

The first type of flow at low velocities where the layers of fluid seen to slide by 
one another without eddies or swirls being present is called “laminar flow” and 
Newton’s law of viscosity holds. 

The second type of flow at higher velocities where eddies are present giving the 
fluid a fluctuating nature is called “turbulent flow”. 
4.3  Reynolds Number (Re) 

Studies have shown that the transition from laminar to turbulent flow in tubes is 
not only a function of velocity but also of density (ρ), dynamic viscosity (μ), and the 
diameter of tube. These variables are combining into the Reynolds number, which is 
dimensionless group. 

    μ
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where u is the average velocity of fluid, which is defined as the volumetric flow rate 
divided by the cross-sectional area of the pipe. 
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for a straight circular pipe when the value of Re is less than 2,100 the flow is 
always laminar. When the value is over 4,000 the flow be turbulent. In between, which 

Where, Q: volumetric flow rate m3/s 
   m : mass flow rate kg/s &

 G: mass flux or mass velocity kg/m2.s 
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is called the transition region the flow can be laminar or turbulent depending upon the 
apparatus details. 

Example -4.1- 
Water at 303 K is flowing at the rate of 10 gal/min in a pipe having an inside diameter 

I.D. of 2.067 in. calculate the Reynolds number using both English and S.I. units  
Solution:  
The volumetric flow rate (Q) = 10 gal/min (1.0 ft3/7.481 gal) (min/60 s) = 0.0223 ft3/s 
Pipe diameter (d) = 2.067 in (ft/12 in) = 0.172 ft 
Cross-sectional area (A) = π/4 d2 = π/4 (0.172)2 = 0.0233 ft2 
Average velocity (u) =Q/A = (0.0223 ft3/s) / 0.0233 ft2  = 0.957 ft/s 
At T = 303 K   The density of water (ρ = 62.18 lb/ft3), 

       The dynamic viscosity (μ = 5.38 x 10-4) lb/ft.s 

μ
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  = 1.902 x 104 (turbulent) 

Using S.I. units 
At T = 303 K   The density of water (ρ = 996 kg/m3), 
               The dynamic viscosity (μ = 8.007 x 10-4) kg/m.s (or Pa.s) 
  Pipe diameter (d) = 0.172 ft (m/3.28 ft) = 0.0525m 
  Average velocity (u) =0.957 ft/s (m/3.28 ft) = 0.2917 m/s 
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= = 1.905 x 104 (turbulent) 

4.4  Overall Mass Balance and Continuity Equation  
In fluid dynamics, fluids are in motion. Generally, they are moved from place to 

place by means of mechanical devices such as pumps or blowers, by gravity head, or by 
pressure, and flow through systems of piping and/or process equipment.  

The first step in the solution of flow problems is generally to apply the principles 
of the conservation of mass to the whole system or any part of the system. 

INPUT – OUTPUT = ACCUMULATION 
At steady state, the rate of accumulation is zero 
∴      INPUT = OUTPUT  

 In the following Figure a simple flow system is shown where fluid enters section 
 with an average velocity (u1) and density (ρ1) through the cross-sectional area (A1). 

The fluid leaves section  with an average velocity (u2) and density (ρ1) through the 
cross-sectional area (A2). 

Thus, 
At steady state      21 mm && =
         Q1 ρ1 = Q2 ρ2 
     u1 A1 ρ1 = u2 A2 ρ2 
For incompressible fluids at the same temperature [ρ1 = ρ2] 
    ∴ u1 A1 = u2 A2   
   
 
 

Process u1 
ρ1 

u2 
ρ2 

  
A1 A2
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Example -4.2-      ************** 
A petroleum crude oil having a density of 892 kg/m3 is flowing, through the piping 

arrangement shown in the below Figure, at total rate of 1.388 x 10-3 m3/s entering pipe 
. The flow divides equally in each of pipes . The steel pipes are schedule 40 pipe. 

Table{{{{}}}.  Calculate the following using SI units: 
a- The total mass flow rate in pipe  and pipes . 
b- The average velocity in pipe  and pipes . 
c- The mass velocity in pipe .  
 
 
Solution:  

Pipe  I.D. = 0.0525 m,  A1 = 21.65 x 10-4 m2 

Pipe  I.D. = 0.07792 m, A1 = 47.69 x 10-4 m2 

Pipe  I.D. = 0.04089 m, A1 = 13.13 x 10-4 m2 
a- the total mass flow rate is the same through pipes  and  and is  

ρ11 Qm =&  = 1.388 x 10-3 m3/s (892 kg/m3) = 1.238 kg/s 
Since the flow divides equally in each pipes ’ 

   ⇒ = 0.619 kg/s 2/238.12/13 == mm &&
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d- G1= u1 ρ1 = 0.641 m/s (892 kg/m3) = 572 kg/m2.s 
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= 572 kg/m2.s 

 
4.5  Energy Relationships and Bernoulli’s Equation 

The total energy of a fluid in motion consists of the following components: - 
Internal Energy (U)  
 This is the energy associated with the physical state of fluid, i.e. the energy of 

atoms and molecules resulting from their motion and configuration. Internal 
energy is a function of temperature. It can be written as (U) energy per unit mass 
of fluid. 

Potential Energy (PE)  
 This is the energy that a fluid has because of its position in the earth’s field of 

gravity. The work required to raise a unit mass of fluid to a height (z) above a 
datum line is (zg), where (g) is gravitational acceleration. This work is equal to 
the potential energy per unit mass of fluid above the datum line. 

Kinetic Energy (KE)  
 This is the energy associated with the physical state of fluid motion. The kinetic 

energy of unit mass of the fluid is (u2/2), where (u) is the linear velocity of the 
fluid relative to some fixed body.  

Pressure Energy (Prss.E)  

2"

1 1/2" 

3"

1 1/2" 
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 This is the energy or work required to introduce the fluid into the system without 
a change in volume. If (P) is the pressure and (V) is the volume of a mass (m) of 
fluid, then (PV/m ≡ Pυ) is the pressure energy per unit mass of fluid. The ratio 
(V/m) is the fluid density (ρ).  
The total energy (E) per unit mass of fluid is given by the equation: - 

E = U + zg + P/ ρ + u2/2  
where, each term has the dimension of force times distance per unit mass. In calculation, 
each term in the equation must be expressed in the same units, such as J/kg, Btu/lb or 
lbf.ft/lb. i.e. (MLT-2)(L)(M-1) = [L2T-2] ≡ {m2/s2, ft2/s2}. 
 A flowing fluid is required to do work in order to overcome viscous frictional 
forces that resist the flow. 
 The principle of the conservation of energy will be applied to a process of input 
and output streams for ideal fluid of constant density and without any pump present and 
no change in temperature. 
 E1 = E2 
U1 + z1 g + P1/ ρ + u1

2/2 = U2 + z2 g + P2/ ρ + u2
2/2 

 U1 = U2  (no change in temperature) 
P1/ ρ + u1

2/2 + z1 g = P2/ ρ + u2
2/2 + z2 g  

⇒ P/ ρ + u2/2 + z g = constant 
⇒ ΔP/ ρ + Δu2/2 + Δz g = 0  --------- Bernoulli’s equation 
4.6  Equations of Motion 

According to Newton’s second law of motion, the net force in x-direction (Fx) 
acting on a fluid element in x-direction is: - 

Fx = (mass) x (acceleration in x-direction) 
Fx = (m) (ax)   
In the fluid flow the following forces are present: - 

1- Fg  ---------force due to gravity 
2- FP  ---------force due to pressure 
3- FV  ---------force due to viscosity 
4- Ft  ---------force due to turbulence 
5- Fc  ---------force due to compressibility 
6- Fσ  ---------force due to surface tension  

The net force is could be given by  
Fx =    (Fg)x  +  (FP)x  +  (FV)x  +  (Ft)x  +  (Fc)x  +  ( Fσ)x  
 
 
 
 
 
 
 
In most of the problems of fluid in motion the forces due to surface tension (Fσ), 

and the force due to compressibility (Fc) are neglected, 

 
Process E1 E2 

 
 
 
 

 
Reynolds Equation 

 
 

Navie
 

r-Stokes equation 

 
Euler’s equation 
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⇒   Fx =    (Fg)x  +  (FP)x  +  (FV)x  +  (Ft)x   

This equation is called “Reynolds equation of motion” which is useful in the 
analysis of turbulent flow. 

In laminar (viscous) flow, the turbulent force becomes insignificant and hence the 
equation of motion may be written as: - 

 Fx =    (Fg)x  +  (FP)x  +  (FV)x   

This equation is called “Navier-Stokes equation of motion” which is useful in the 
analysis of viscous flow. 

If the flowing fluid is ideal and has very small viscosity, the viscous force and 
viscosity being almost insignificant and the equation will be: - 

 Fx =    (Fg)x  +  (FP)x   
This equation is called “Euler’s equation of motion”. 

4.6.1 Euler’s equation of motion 
The Euler’s equation for steady state flow on an ideal fluid along a streamline is 

based on the Newton’s second law of motion. The integration of the equation gives 
Bernoulli’s equation in the form of energy per unit mass of the flowing fluid. 

Consider a steady flow of an ideal fluid along a streamline. Now consider a small 
element of the flowing fluid as shown below, 

Let:  
dA: cross-sectional area of the fluid element, 
dL: Length of the fluid element’ 
dW: Weight of the fluid element’ 
u: Velocity of the fluid element’ 
P: Pressure of the fluid element’ 

  
 
 
The Euler’s equation of motion is based 

on the following assumption: - 
1- The fluid is non-viscous (the frictional  
 losses are zero). 
2- The fluid is homogenous and  
Incompressible (the density of fluid 
is constant). 
3- The flow is continuous, steady,  
and along the streamline (laminar). 
4- The velocity of flow is uniform over the section. 
5- No energy or force except gravity and pressure forces is involved in the flow.  

The forces on the cylindrical fluid element are, 
1- Pressure force acting on the direction of flow (PdA) 
2- Pressure force acting on the opposite direction of flow [(P+dP)dA] 
3- A component of gravity force acting on the opposite direction of flow (dW 

sin θ) 

θ

dW 

dz

θ

dA

dL

P

P+dP

Flow

Flow
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- The pressure force in the direction of low 
FP = PdA – (P+dP) dA = – dPdA  

- The gravity force in the direction of flow 
Fg = – dW sin θ    {W=m g = ρ dA dL g} 

  = – ρ g dA dL sin θ  { sin θ = dz / dL} 
   = – ρ g dA dz 

- The net force in the direction of flow  
        F = m a     { m  = ρ dA dL } 

   = ρ dA dL a    {
dL
du

u
dt
dL

dL
du

dt
du

a =×== } 

 = ρ dA u du 
We have  
       Fx =    (Fg)x  +  (FP)x  
    ρ dA u du = – dP dA – ρ g dA dz  {÷ – ρ  dA z} 
⇒ dP/ ρ + du2/2 + dz g = 0  --------- Euler’s equation of motion 
Bernoulli’s equation could be obtain by integration the Euler’s equation 
∫dP/ ρ + ∫du2/2 + ∫dz g = constant 

   ⇒ P/ ρ + u2/2 + z g = constant 
⇒ ΔP/ ρ + Δu2/2 + Δz g = 0  --------- Bernoulli’s equation 

4.7 Modification of Bernoulli’s Equation 
1- Correction of the kinetic energy term 

The velocity in kinetic energy term is the mean linear velocity in the pipe. To 
account the effect of the velocity distribution across the pipe [(α) dimensionless 
correction factor] is used. 

For a circular cross sectional pipe:  
- α = 0.5  for laminar flow 
- α = 1.0  for turbulent flow 

2- Modification for real fluid 
The real fluids are viscous and hence offer resistance to flow. Friction appears 

wherever the fluid flow is surrounding by solid boundary. Friction can be defined 
as the amount of mechanical energy irreversibly converted into heat in a flow in 
stream. As a result of that the total energy is always decrease in the flow direction 
i.e. (E2 < E1). Therefore E1 = E2 + F, where F is the energy losses due to friction.  

Thus the modified Bernoulli’s equation becomes, 
 P1/ ρ + u1

2/2 + z1 g  = P2/ ρ + u2
2/2 + z2 g + F  ---------(J/kg ≡ m2/s2) 

3- Pump work in Bernoulli’s equation 
A pump is used in a flow system to increase the 

mechanical energy of the fluid. The increase being 
used to maintain flow of the fluid. Assume a pump is 
installed between the stations  and  as shown in 
Figure. The work supplied to the pump is shaft work 
(– Ws), the negative sign is due to work added to 
fluid.  

Pump
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Frictions occurring within the pump are: - 
a- Friction by fluid 
b- Mechanical friction 
Since the shaft work must be discounted by these frictional force (losses) to 

give net mechanical energy as actually delivered to the fluid by pump (Wp). 
Thus,  Wp = η Ws   where η, is the efficiency of the pump.  

  Thus the modified Bernoulli’s equation for present of pump between the two 
selected points  and   becomes, 

Fzg
uP

Wszg
uP

+++=+++ 2
2

2
22

1
1

2
11

22 αρηαρ  ---------(J/kg ≡ m2/s2) 

By dividing each term of this equation by (g), each term will have a length units, 
and the equation will be: - 

Fhz
g

u
g

P
g
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z
g
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g

P
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22
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22 αρ
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where  hF = F/g    ≡ head losses due to friction. 
4.8 Friction in Pipes 

When a fluid is flowing through a pipe, the fluid experiences some resistance due 
to which some of energy of fluid is lost. This loss of energy is classified on: - 

 
 
 
 
 
 
 
 
 
 

4.8.1 Relation between Skin Friction and Wall Shear Stress 
For the flow of a fluid in short length of pipe (dL) of diameter (d), the total 

frictional force at the wall is the product of shear stress (τrx) and the surface area of the 
pipe (π d dL). This frictional force causes a drop in pressure (– dPfs). 

Consider a horizontal pipe as shown in Figure; 
Force balance on element (dL) 

τ(π d dL)= [P– (P+dPfs)] (π/4 d2) 
⇒ – dPfs = 4(τ dL/d) = 4 (τ /ρ ux

2) (dL/d) ρ ux
2 ------------------------(*) 

 
where,  (τ /ρ ux

2) = Φ=Jf =f/2 =f′/2 
 
Φ(or Jf): Basic friction Factor  
f: Fanning (or Darcy) friction Factor 
f′: Moody friction Factor. 

Major energy losses 
(Skin friction) 
Due to surface skin 
of the pipe  

Minor energy losses 
(Form friction) 

• Sudden expansion or 
contraction pipe 

• Bends, valves and fittings 
• An obstruction in pipe  

Energy Losses

τrx 

τrx 

dP 
Flo

P+dPfs 

L 
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For incompressible fluid flowing in a pipe of constant cross-sectional area, (u) is 

not a function of pressure or length and equation (*) can be integrated over a length (L) 
to give the equation of pressure drop due to skin friction:   

–ΔPfs = 4f (L/d) (ρu2/2)  ---------------------(Pa) 
The energy lost per unit mass Fs is then given by: 
Fs = (–ΔPfs/ρ) = 4f (L/d) (u2/2)  -----------------(J/kg) or (m2/s2) 
The head loss due to skin friction (hFs) is given by: 
hFs = Fs/g = (–ΔPfs/ρg) = 4f (L/d) (u2/2g) ---------------(m) 

Note: -  

• All the above equations could be used for laminar and turbulent flow. 

• ΔPfs =P2 – P1 ⇒  -ΔPfs =P1 – P2 (+ve value) 
4.8.2 Evaluation of Friction Factor in Straight Pipes 

1. Velocity distribution in laminar flow  
Consider a horizontal circular pipe of a uniform diameter in which a Newtonian, 
incompressible fluid flowing as shown in Figure: 
   
 
 
 
 
 
 
Consider the cylinder of radius (r) sliding in a cylinder of radius (r+dr).  
Force balance on cylinder of radius (r) 

    τrx (2π r L)= (P1- P2) (π r2) 
for laminar flow   τrx = - μ (dux/dr) 
⇒ r (P1-P2) = - μ (dux/dr) 2L  ⇒ [(P2- P1)/(2L μ)] r dr  = dux 

⇒ [ΔPfs/(2L μ)] r2/2 = ux + C 
- Boundary Condition (1)   (for evaluation of C) 

 at r = R    ux = 0  ⇒ C = [(ΔPfs R2)/(4L μ)] 
⇒ [(ΔPfs r2)/(4L μ)] = ux +  [(ΔPfs R2)/(4L μ)] 
⇒ ux = [(-ΔPfs R2)/(4L μ)][1– (r/R)2]    velocity distribution (profile) in laminar flow 

- Boundary Condition (2)   (for evaluation of umax) 

at r = o   ux = umax ⇒ umax = [(–ΔPfs R2)/(4 L μ)]   

⇒ umax = [(–ΔPfs d2)/(16 L μ)]  ----------centerline velocity in laminar flow 

r 

dr 
r+dr R

P1 
Flow 

P2d 

dr
r

R
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∴ ux / umax = [1–(r/R)2] ---------velocity distribution (profile)in laminar flow 
2. Average (mean) linear velocity in laminar flow  

       Q = u A----------------------- (1)  
Where, (u) is the average velocity and (A) is the cross-sectional area = (π R2) 
     dQ = ux dA  where ux = umax[1–(r/R)2], and dA = 2π r dr 
⇒ dQ = umax[1–(r/R)2] 2π r dr  

RRQ

R
rr

udr
R
r

rudQ
0

2

42

max
0

2

3

max
0 42

2)(2 −=−= ∫∫ ππ  

⇒Q = umax/2 (π R2) ----------------------- (2) 
By equalization of equations (1) and (2) 
⇒ u = umax/2 = [(–ΔPfs R2)/(8L μ)]  = [(–ΔPfs d2)/(32 L μ)]  
∴ –ΔPfs = (32 L μ u) / d2  Hagen–Poiseuille equation 

3. Friction factor in laminar flow 
We have  –ΔPfs = 4f (L/d) (ρu2/2)----------------------(3)  
and also  –ΔPfs = (32 L μ u) / d2  ----------------------(4)  
 By equalization of these equations [i.e. eqs. (3) and (4)] 
⇒ (32 L μ u) / d2 = 4f (L/d) (ρu2/2) ⇒ f = 16 μ /(ρ u d) 
∴ f = 16 / Re Fanning or Darcy friction factor in laminar flow. 

4. Velocity distribution in turbulent flow 
The velocity, at any point in the cross-section of cylindrical pipe, in turbulent flow 
is proportional to the one-seventh power of the distance from the wall. This may be 
expressed as follows: - 

  ux / umax = [1–(r/R)]1/7  
5. Average (mean) linear velocity in Turbulent flow 

       Q = u A----------------------- (1)  
     dQ = ux dA  where ux  = umax [1–(r/R)]1/7, and dA = 2π r dr 
⇒ dQ = umax [1– (r/R)]1/7 2π r dr  

∫∫ −=
RQ

dr
R
r

rudQ
0

7/1
max

0

)1(2π  

Let M = (1– r/R) dM = (–1/R) dr 
or   r = R(1 – M)   dr  = – R dM 
at   r = 0     M=1 
at   r = R    M=0 
Rearranging the integration  

∫∫ −=−−=
0

1

7/87/12
max

0

1

7/12
max )(2)()1(2 dMMMRudMMMRuQ ππ   

⎥⎦
⎤

⎢⎣
⎡

−=−=
15
7

8
7

2
7/157/8

2 2
max

1

0

7/157/8
2

max Ru
MM

RuQ ππ  

Prandtl one-seventh law equation. 
velocity distribution (profile)in laminar flow 

average velocity in 
laminar flow
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⇒Q = 49/60 umax (π R2) ----------------------- (5) 
By equalization of equations (1) and (5) 
∴ u = 49/60 umax ≈ 0.82 umax   ------------average velocity in turbulent flow 
 
 
                                                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Friction factor in Turbulent flow 
A number of expressions have been proposed for calculating friction factor in terms 
of or function of (Re). Some of these expressions are given here: -  

25.0Re
079.0

=f      for 2,500 < Re <100,000 

and,     for 2,500 < Re <10,000,000 4.0)log(Re4 5.05.0 −=− ff
These equations are for smooth pipes in turbulent flow. For rough pipes, the ratio 
of (e/d) acts an important role in evaluating the friction factor in turbulent flow as 
shown in the following equation 

⎥⎦
⎤

⎢⎣
⎡

+−= −−− 5.015.0 )2/(Re885.027.0ln5.2)2/( f
d
e

f   

Table of the roughness values e.  
Surface type ft mm

Planed wood  
or finished concrete 0.00015 0.046

Unplaned wood 0.00024 0.073
Unfinished concrete 0.00037 0.11 
Cast iron 0.00056 0.17 
Brick 0.00082 0.25 
Riveted steel 0.0017 0.51 
Corrugated metal 0.0055 1.68 
Rubble 0.012 3.66 

Figure of the shape of velocity profiles 
for streamline and turbulent flow 
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Figure of the Variation of (u/umax) with 
Reynolds number in a pipe 
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7. Graphical evaluation of friction factor  
As with the results of Reynolds number the curves are in three regions (Figure 3.7 
vol.I). At low values of Re (Re < 2,000), the friction factor is independent of the 
surface roughness, but at high values of Re (Re > 2,500) the friction factor vary 
with the surface roughness. At very high Re, the friction factor become 
independent of Re and a function of the surface roughness only. Over the transition 
region of Re from 2,000 to 2,500 the friction factor increased rapidly showing the 
great increase in friction factor as soon as turbulent motion established. 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.7) Pipe friction chart Φ versus Re 
Example -4.3- 
Water flowing through a pipe of 

20 cm I.D. at section  and 10 cm 
at section . The discharge 
through the pipe is 35 lit/s. The 
section  is 6 m above the datum 
line and section  is 2 m above it. 
If the pressure at section  is 245 
kPa, find the intensity of pressure 
at section . Given that ρ = 1000 
kg/m3, μ= 1.0 mPa.s.   

 
2 m

6 m

Datum line
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Solution: 
Q = 35 lit/s = 0.035 m3/s 
u =  Q/A   ⇒ u1= (0.035 m3/s) / (0.22 π/4) m2 = 1.114 m/s 
     ⇒ u2= (0.035 m3/s) / (0.12 π/4) m2 = 4.456 m/s 
Re = ρud / μ ⇒ Re1= (1000 kg/m3 x 1.114 m/s x 0.2 m) / (0.001Pa.s) = 222,800 
Re = ρud / μ ⇒ Re2= (1000 kg/m3 x 4.456 m/s x 0.1 m) / (0.001Pa.s) = 445,600 
The flow is turbulent along the tube (i.e. α1 = α2 =1.0) 
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P = 253.3 kPa 

H.W. 
If the pipe is smooth and its length is 20 m, find P2.  Ans. P2 = 246.06 kPa 
Example -4.4- 
A conical tube of 4 m length is fixed at an inclined angle of 30° with the horizontal-

line and its small diameter upwards. The velocity at smaller end is (u1 = 5 m/s), while (u2 
= 2 m/s) at other end. The head losses in the tub is [0.35 (u1-u2)2/2g]. Determine the 
pressure head at lower end if the flow takes place in down direction and the pressure 
head at smaller end is 2 m of liquid.   

Solution: 
 
No information of the fluid properties.  
Then assume the flow is turbulent, (i.e. α1 = α2 =1.0) 

z1  = L sinθ  
     =4 sin 30  
     =2 m 
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 = 2.0 + 2.0 + (25– 4)/(2 x 9.81) – 0.35(5–2)2 / (2 x 9.81) = 4.9 m 
 
Example -4.5- 
Water with density ρ = 998 kg/m3, is flowing at steady mass flow rate through a 

uniform-diameter pipe. The entrance pressure of the fluid is 68.9 kPa in the pipe, which 
connects to a pump, which actually supplies 155.4 J/kg of fluid flowing in the pipe. The 
exit pipe from the pump is the same diameter as the inlet pipe. The exit section of the 
pipe is 3.05 m higher than the entrance, and the exit pressure is 137.8 kPa. The Reynolds 
number in the pipe is above 4,000 in this system. Calculate the frictional loss (F) in the 
pipe system. 

 

z1

Datum line 30°
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Solution:  
Setting the datum line at z1 thus, z1 = 0, z2 = 3.05 m 
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= (68.9 - 137.8) x 1000/998 +155.4 - 9.81(3.05) 
= 56.5 J/kg or m2/s2  
 
Example -4.6 
A pump draws 69.1 gal/min of liquid solution having a density of 114.8 lb/ft3 from an 

open storage feed tank of large cross-sectional area through a 3.068″I.D. suction pipe. 
The pump discharges its flow through a 2.067″I.D. line to an open over head tank. The 
end of the discharge line is 50′ above the level of the liquid in the feed tank. The friction 
losses in the piping system are F = 10 ft lbf/lb. what pressure must the pump develop and 
what is the horsepower of the pump if its efficiency is η=0.65.                      

Solution:  
No information of the type of fluid and   
then its viscosity, therefore assume 
the flow is turbulent. 
P1 = P2 = atmospheric press. 
u1 ≈ 0 large area of the tank 
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Q = 69.1 gal/min (ft3/7.48 gal)(min/60 s) = 0.154 ft3/s 
A3 (area of suction line) = π/4 (3.068 in)2 (ft/12 in)2 = 0.0513 ft2  
A4 = A2 (area of discharge line) = π/4 (2.067 in)2 (ft/12 in)2 = 0.0235 ft2  
u2 = Q / A2 = (0.154 ft3/s) / (0.0235 ft2) = 6.55 ft/s 
u3 = Q / A3 = (0.154 ft3/s) / (0.0513 ft2) = 3.0 ft/s 

⇒ lblbft
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=η = 60.655 ft lbf/lb 

Ws = ηWs/η = 60.655/0.65 = 93.3 lbf ft/lb 
Mass flow rate ρQm =& = 0.1539 ft3/s (114.8 lb/ft3) = 17.65 lb/s 
Power required for pump =  = 17.65 lb/s (93.3 ft lbf/lb)(hp/550 ft lbf/s) Wsm&
       = 3.0 hP 
To calculate the pressure that must be developed by the pump, Energy Balance 

equation must be applied over the pump itself (points  and ) 
u4 = u2 = 6.55 ft / s  and u3 = 3 ft / s 

3.05 m 

u1 

u2 

50 ft 

I.D. = 3.068 in 
I.D. = 2.06 in 
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ηρ = 60.655 + (- 0.527) = 60.13 ft lbf / lb   

⇒ ΔP = 60.13 ft lbf/lb (114.8) lb/ft3  = 69.03 lbf/ft2 
      = 47.94 psi 
      = 3.26 bar 
Example -4.7- 
A liquid with a constant density (ρ) is flowing at an unknown velocity (u1) through a 

horizontal pipe of cross-sectional area (A1) at a pressure (Pi), and then it passes to a 
section of the pipe in which the area is reduced gradually to (A2) and the pressure (P2). 
Assume no friction losses, find the velocities (u1) and (u2) if the pressure difference (P1-
P2) is measured.         

Solution:  
 
 
 
 
 
From continuity equation  ⇒ ρ Q = ρ1 Q1 = ρ2 Q2 21 mmm &&& ==

And for constant density ⇒Q = Q1 = Q2 ⇒ u A = u1 A1 = u2 A2 
    ⇒u2 = u1 A1/A2 
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Assume the flow is turbulent (α1 = α2) 
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Example -4.8- 
A nozzle of cross-sectional area (A2) is discharging to the atmosphere and is located in 

the side of a large tank, in which the open surface of liquid in the tank is (H) above the 
centerline of the nozzle. Calculate the velocity (u2) in the nozzle and the volumetric rate 
of discharge if no friction losses are assumed and the flow is turbulent.           

Solution: 
Since A1 is very large compared to A2 (⇒u1 ≈ 0). 
The pressure P1 is greater than atmosphere pressure 
by the head of fluid H. 
The pressure P2 which is at nozzle exit, is at  
atmospheric pressure . 

u1 
A1 

u2 
A2 

P1 
P2 

A1

A2 1. 

3. 

.2

H
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