

Al-Mustaqbal University College of Engineering & Technology Computer Techniques Engineering Department

Digital Communication

Lecture 7

Source Coding Techniques Calculations, and Practical Examples of PCM

Dr. Ahmed Hasan Al-Janabi PhD in Computer Network Email: <u>Ahmed.Janabi@uomus.edu.iq</u>

Aims of this Lecture

- **Calculate** critical parameters like code word length, bandwidth, and bit rate for PCM systems.
- **Solve** practical examples step-by-step to reinforce understanding of PCM concepts.
- **Identify** the advantages and limitations of PCM in communication systems.

Example 1: PCM Calculations

Problem: A television signal with a bandwidth of 4.2 MHz4.2 \, \text{MHz}4.2MHz is transmitted using binary PCM. The number of quantization levels is 512. Calculate:

- 1. Code word length
- 2. Transmission bandwidth
- 3. Final bit rate
- 4. Output signal-to-quantization noise ratio

Step 1: Code Word Length (v)

The formula for the number of quantization levels is:

$$q=2^v$$

Taking the logarithm base 2 of both sides to solve for v:

$$v = \log_2(q)$$

Substitute q = 512:

$$v = \log_2(512) = \log_{10}(512) / \log_{10}(2)$$

From logarithmic values:

$$\log_{10}(512) = 2.709 \hspace{0.4cm} ext{and} \hspace{0.4cm} \log_{10}(2) = 0.301$$

So:

$$v=rac{2.709}{0.301}=9\,\mathrm{bits}$$

Answer: Code word length = 9 bits

Step 2: Transmission Bandwidth (B_T)

The formula for PCM transmission bandwidth is:

$$B_T \geq v \cdot W$$

Substitute $v=9\,\mathrm{bits}$ and $W=4.2\,\mathrm{MHz}$:

$$B_T \geq 9 imes 4.2 = 37.8\,\mathrm{MHz}$$

Answer: Transmission bandwidth = 37.8 MHz

Step 3: Final Bit Rate (r)

The formula for signaling rate is:

$$r = v \cdot f_s$$

The sampling frequency is related to the bandwidth (W):

$$f_s=2W=2 imes 4.2=8.4\,\mathrm{MHz}$$

Substitute $v=9\,{
m bits}$ and $f_s=8.4\,{
m MHz}$:

$$r = 9 \times 8.4 = 75.6 \,\mathrm{Mbps}$$

Answer: Final bit rate = 75.6 Mbps

Example 1

Step 4: Signal-to-Noise Ratio (S/N)

The formula for S/N in PCM is:

$$S/N=4.8+6v\,({
m in~dB})$$

Substitute v = 9 bits:

$$S/N = 4.8 + 6 imes 9 = 4.8 + 54 = 58.8\,\mathrm{dB}$$

Answer: $S/N=58.8\,\mathrm{dB}$

Example 2

Example:

A signal input to PCM has a bandwidth of $W=4\,{
m kHz}$. The input varies between $-3.8\,{
m V}$ and $+3.8\,{
m V}$ with an average power of $30\,{
m mW}$. The SNR is $20\,{
m dB}$. Calculate:

- 1. Number of bits per sample
- 2. Transmission bandwidth if 20 PCM coders are multiplexed.

Step 1: Signal-to-Noise Ratio (S/N)

Example 2

The formula for S/N is given in decibels:

$$S/N = 10 \log_{10} \left(rac{ ext{Signal Power}}{ ext{Noise Power}}
ight)$$

From the problem, $S/N=20\,\mathrm{dB}$:

$$20 = 10 \log_{10} \left(rac{ ext{Signal Power}}{ ext{Noise Power}}
ight)$$

Simplify:

$$\log_{10}\left(rac{ ext{Signal Power}}{ ext{Noise Power}}
ight)=2$$

So:

$$\frac{\text{Signal Power}}{\text{Noise Power}} = 10^2 = 100$$

Step 2: Number of Bits per Sample (v)

The SNR for PCM is also given by:

 $S/N=2^{2v}$

Substitute S/N = 100:

 $2^{2v} = 100$

Take the logarithm base 2:

$$2v = \log_2(100) = rac{\log_{10}(100)}{\log_{10}(2)}$$

From logarithmic values:

$$\log_{10}(100) = 2, \quad \log_{10}(2) = 0.301$$
 $2v = rac{2}{0.301} = 6.644$

Divide by 2:

$$v = rac{6.644}{2} = 3.322\,{
m bits}$$

Round up:

$v=7\,{ m bits}$

Answer: $v=7\,{
m bits}$

Digital Communication - Dr. Ahmed Al-Janabi

Example 2

Step 3: Transmission Bandwidth (B_T)

For PCM, the bandwidth is:

$$B_T \ge v \cdot W$$

Substitute v=7 and $W=4\,\mathrm{kHz}$:

$$B_T = 7 \cdot 4 = 28 \, \mathrm{kHz}$$

If 20 PCM coders are multiplexed:

$$B_T=20\cdot 28=560\,\mathrm{kHz}$$

Answer: Transmission bandwidth = 560 kHz

Example 3: PCM System Requirements

Problem Statement:

The information in an analog signal voltage waveform is to be transmitted over a PCM system with the following specifications:

- Accuracy: $\pm 0.1\%$ (full scale).
- Bandwidth: $W = 100 \, {
 m Hz}$.
- Amplitude range: $-10\,\mathrm{V}$ to $+10\,\mathrm{V}$.

Determine:

- 1. The number of levels required for such accuracy.
- 2. The code word length.
- 3. The minimum bit rate required.
- 4. The bandwidth required for the PCM signal.

Solution

Example 3

Step 1: Number of Levels (q)

The quantization step size (δ) is determined by the accuracy requirement:

 $\delta = \frac{\text{Full Scale Range}}{\text{Number of Levels}}$

Rearranging for *q*:

$$q = \frac{\text{Full Scale Range}}{\delta}$$

- Full scale range = 10 (-10) = 20 V.
- Accuracy requirement = $\pm 0.1\%$:

 $\delta=0.001 imes20=0.02\,\mathrm{V}$

Substitute $\delta = 0.02\,\mathrm{V}$:

$$q=rac{20}{0.02}=1000\,\mathrm{levels}$$

Answer: q = 1000 levels

Step 2: Code Word Length (v)

The code word length (v) is related to the number of levels (q) by:

 $q=2^v$

Take the logarithm base 2 of both sides:

$$v = \log_2(q)$$

Substitute q = 1000:

$$v = \log_2(1000) = rac{\log_{10}(1000)}{\log_{10}(2)}$$

From logarithmic values:

$$\log_{10}(1000) = 3, \quad \log_{10}(2) = 0.301$$
 $v = rac{3}{0.301} = 9.966$

Since v must be an integer, round up to the nearest whole number:

$$v = 10$$
 bits

Answer: v = 10 bits

Step 3: Minimum Bit Rate (r)

Example 3

The bit rate (r) is calculated as:

 $r = v \cdot f_s$

The sampling frequency (f_s) must satisfy the Nyquist criterion:

$$f_s=2W=2\cdot 100=200\,\mathrm{Hz}$$

Substitute $v=10\,{
m bits}$ and $f_s=200\,{
m Hz}$:

 $r = 10 \cdot 200 = 2000 \text{ bps} = 2 \text{ kbps}$

Answer: $r = 2 \,\mathrm{kbps}$

Step 4: Bandwidth Required (B_T)

The minimum bandwidth required for a PCM signal is:

$$B_T = rac{r}{2}$$

Substitute $r=2000\,\mathrm{bps:}$

$$B_T = rac{2000}{2} = 1000\,{
m Hz} = 1\,{
m kHz}$$

Answer: $B_T = 1 \, \mathrm{kHz}$

Homework

Q1/ The information in an analog waveform with maximum frequency $f_m = 3 \ kHz$ is to be transmitted over 16- levels PCM system. The quantization distortion is specified not exceed 1% of peak to peak analog signal.

- i- What is the number of bits per sample that should be used in this PCM?
- ii- What is minimum bit transmission rate?

Q2 / A signal of bandwidth 3.5 kHz is sampled, quantized and coded by PCM system. The code signal is then transmitted over a transmission channel of supporting a transmission rate of 50 kbps. Calculate the maximum signal to noise that can obtained by this system. The input signal has peak to peak value of 4 volts and rms value of 0.2 V.

Q3 / Consider an audio signal comprised of the sinusoidal term $(t) = 3\cos(500\pi t)$.

- i- Find the number of quantization level with an accuracy of 1%.
- ii- Determine the signaling rate.
- iii- The bandwidth of transmission channel.

Advantages of PCM

- Reduces the effect of channel noise and interference.
- Allows regeneration of signals along the transmission path, reducing errors.
- □ Enables easy multiplexing of multiple PCM signals.
- Supports encryption and decryption for secure communication.

Limitations of PCM

PCM systems are more complex compared to analog pulse modulation systems.

Requires higher channel bandwidth due to digital coding.

Modifications of PCM

- **1. Delta Modulation**: Simplified implementation for specific applications.
- Wideband Communication Channels: PCM can be adapted to support high-bandwidth applications.
- **3. Data Compression**: Reduces redundancy, improving efficiency.

Thank you