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a) Find the rate dy/dt (m/h) at which the tank is draining at (Hint: If vy is the exit velocity of a particle of lava, its height ¢
time ¢. seconds later will be s = vyt — 16t feet. Begin by finding the
b) When is the fluid level in the tank falling fastest? slowest? time at which ds/dt = 0. Neglect air resistance.)

What are the values of dy/dt at these times?
W8 ¢) GRAPHER Graph y and dy/dt together and discuss the

behavior of y in relation to the signs and values of dy/dr. %% Grapher Explorations
30. The volume V = (4/3)7r> of a spherical balloon changes with Exercises 33-36 give the position function s = f(¢) of a body moving

the radius. along the s-axis as a function of time . Graph f together with the

a) At what rate does the volume change with respect to the  Vvelocity function v(¢) = ds/dt = f’(t) and the acceleration function
radius when r = 2 ft? a(t) = d*s/dt*> = f"(t). Comment on the body’s behavior in relation

b) By approximately how much does the volume increase when to the signs and values v and a. Include in your commentary such
the radius changes from 2 to 2.2 ft? topics as the following.

31. Suppose that the distance an aircraft travels along a runway before a) When is the body momentarily at rest?

takeoff is given by D = (10/9)2, where D is measured in meters b) When does it move to the left (down) or to the right (up)?

from the starting point and ¢ is measured in seconds from the time ¢) When does it change direction?

the brakes are released. If the aircraft will become airborne when d) When does it speed up and slow down?

its speed reaches 200 km/hr, how long will it take to become €) When is it moving fastest (highest speed)? slowest?

airborne, and what distance will it travel in that time? f) When is it farthest from the axis origin?

B 32. Volcanic lava fountains, Although the November 1959 Kilauea ~ 33. s =200r — 161>, 0 <t <125 (A heavy object fired straight
Iki eruption on the island of Hawaii began with a line of fountains up from the earth’s surface at 200 ft/sec)

along the wall of the crater, activity was later confined to a single 3. s=1>—3t4+2, 0<tr<5
vent in the crater’s floor, which at one point shot lava 1900 ft 3 5
straight into the air (a world record). What was the lava’s exit B.os=r—6"+7, 0<1=<4

velocity in feet per second? in miles per hour? 36. s=4—-Tt+6:2—13, 0<t<4

R R R R R e

Derivatives of Trigonometric Functions

Trigonometric functions are important because so many of the phenomena we
want information about are periodic (electromagnetic fields, heart rhythms, tides,
weather). A surprising and beautiful theorem from advanced calculus says that
every periodic function we are likely to use in mathematical modeling can be
written as an algebraic combination of sines and cosines, so the derivatives of sines
and cosines play a key role in describing important changes. This section shows
how to differentiate the six basic trigonometric functions.

Some Special Limits

Our first step is to establish some inequalities and limits. It is assumed throughout
that angles are measured in radians.

Theorem 3
If 6 is measured in radians, then

—16] <sin® <10 and —10] <1—cos@ < |0].
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2.32 From the geometry of this figure,
drawn for 9 > 0, we get the inequality
sin0 + (1 — cos8)? < 62,

Proof To establish these inequalities, we picture 6 as an angle in standard position
(Fig. 2.32). The circle in the figure is a unit circle, so || equals the length of the
circular arc AP. The length of line segment AP is therefore less than |0].

Triangle APQ is a right triangle with sides of length

QP = |sind|, AQ =1 —cosf.
From the Pythagorean theorem and the fact that AP < |6|, we get
sin’6 + (1 — cos6)? = (AP)* < 9. (1)

The terms on the left side of Eq. (1) are both positive, so each is smaller than their
sum and hence is less than 67

sin®6 < 6*> and (1 —cos)? < 6%

By taking square roots, we can see that this is equivalent to saying that
|sinf| < |6] and 1 —cosf| < |6]

or

—~|8] < sinf < |0| and — 18] <1—cosb < |0]. d

EXAMPLE 1 Show that sinf and cos @ are continuous at & = (. That is,

lim sinf =0 and lim cosf = 1.
6—0 60

Solution As 6 — 0, both |#| and —|0| approach 0. The values of the limits there-

fore follow immediately from Theorem 3 and the Sandwich Theorem. a

The function f(0) = (sin8) /6 graphed in Fig. 2.33 appears to have a removable
discontinuity at ¢ = 0. As the figure suggests, limy_o f(8) = 1.

y
1 .
y= 5“01 9 (radians)
[P [ P
Br  —2n~—~L 7 ~—"21 3w

NOT TO SCALE

2.33 The graph of () = (sing)/6.

Proof The plan is to show that the right-hand and left-hand limits are both 1. Then
we will know that the two-sided limit is 1 as well.



Equation (3) is where radian measure comes
in: The area of sector OAP is 6/2 only if 0 is
measured in radians.

y
T
1
P
tan 6
1
sin 6
0 cosd n
o o A(1, 0

1

2.34 The figure for the proof of
Theorem 4. TA/OA = tan g, but OA =1, so
TA =tané.
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To show that the right-hand limit is 1, we begin with values of 6 that are
positive and less than 7 /2 (Fig. 2.34). Notice that

Area AOAP < area sector OAP < area AOAT.

We can express these areas in terms of 6 as follows:
1 1 1
Area AQOAP = Ebase X height = 5(1)(sin 0) = 3 sin @

1 1 o
A tor OAP = —r%0 = —(1)°0 = — 3
rea sector 2r 2( ) > 3)

1 1 1
Area AOAT = Ebase x height = 5(1)(tan ) = 7 tané,

SO

This last inequality will go the same way if we divide all three terms by the positive
number (1/2) sin@:
0 1

l<— < .
sin @ cosf

We next take reciprocals, which reverses the inequalities:

in0
1> 517 > coséb.

Since limg_, g+ cos @ = 1, the Sandwich Theorem gives

Finally, observe that sin6 and 0 are both odd functions. Therefore, f(0) =
(sin@)/6 is an even function, with a graph symmetric about the y-axis (see Fig.
2.33). This symmetry implies that the left-hand limit at O exists and has the same
value as the right-hand limit:

fim 300 = i 326
60~ 6 60+ 0O
so limg_,o (sinf)/0 = 1 by Theorem 5 of Section 1.4. a

Theorem 4 can be combined with limit rules and known trigonometric identities
to yield other trigonometric limits.

cosh —1 _

0.
h

EXAMPLE 2 Show that ’llirr(l)

Solution Using the half-angle formula cos & = 1 — 2sin®(k/2), we calculate
cosh—1 2sin’(h/2)
h—0 h hl—% h

sinf@
= —lim ——sinf Let § = h/2.
60 @

= —(1)(0) =0. (.
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yi=sinx,—2x <x<2m
ya =d(y)dx, 27 <x <2n

Graph the functions

y1 =sinx

The Derivative of the Sine

Technology Conjectures Based on Grapher Images What you see in the
window of a graphing utility can suggest conjectures, sometimes rather strongly.

v, =d(y1)/dx (This is computed by a built-in differentiation utility.)

Does the graph of y, look familiar? What function do you think it is? Test
your conjecture by adding the function’s graph to the screen.

To calculate the derivative of y = sinx, we combine the limits in Example 2 and

Theorem 4 with the addition formula

sin (x + k) = sinx cos h + cos x sin . 4

We have

dy . sin(x +h) —sinx
lim

dx h—0 h

(sinx cos h 4+ cos x sin k) — sinx

Derivative definition

= lim

h—0 h

. sinx(cosh — 1)+ cosxsinh
= lim

h—0 h

Eq. (4)

. . cosh — 1 . sin k
= lim (sinx + ————— )+ 1lim [cosx . —
h—0 h h—0 h

cosh—1

=sinx + lim ——— 4 cosx - lim —
h—0 h h—0

=sinx +0+cosx -1

= COS X.

In short, the derivative of the sine is the cosine.

sinh

h
Example 2 and
Theorem 4

d(s'n) c
— (sinx) = cosx
dx

EXAMPLE 3
dy d
= 2— i M —:2 _— i
a) y=x°—sinx I X dx(smx)
=2x —cosx
d d
b) y=x%sinx: —y=x2—(sinx)+2xsinx

dx dx
= x2cosx + 2xsinx

Difference Rule

Product Rule



Radian measure in calculus

In case you are wondering why calculus uses
radian measure when the rest of the world
seems to use degrees, the answer lies in the
argument that the derivative of the sine is
the cosine. The derivative of sinx is cosx
only if x is measured in radians. The
argument requires that when 4 is a small
increment in x,

}l}_l:l}) (sinh)/h = 1.

This is true only for radian measure, as we
saw during the proof of Theorem 4. You will
see what the degree-mode derivatives of the
sine and cosine are if you do Exercise 76.

y
1 y =cosx

L/ N/ B
\." 7 0 {\_ (4 |

i L | I

| | , 1 |

| I y [

: I : y'=-sinx

I I

I

2.35 The curve y’ = —sinx as the graph
of the slopes of the tangents to the curve
y = cosx.

2.4 Derivatives of Trigonometric Functions

d . .
sinx dy *- —(sinx) —sinx - 1
) y=—: 2o dx
x dx x2
X COSX — sinx
2

Quotient Rule

X

The Derivative of the Cosine
With the help of the addition formula,

cos(x + h) = cosxcosh —sinxsink,

we have
i(COS ) = li cos (x +h) —cosx Derivative
dx *) = h_l;r(l) h definition
. cosx cosh —sinx sink) — cosx
= lim ( ) Eq. (5)
h—0 h
. cosx(cosh—1)—sinxsinh
= lim
h—0 h
. cosh —1 . . sinh
= lim cosx + ———— — lim sinx -
h—0 h—0
. cosh—1 . . sinh
=cosx « lim ————— —sinx - lim ——
h—0 h =0 h

=cosx - 0—sinx - 1
= —sinx.

In short, the derivative of the cosine is the negative of the sine.

147

(5)

Example 2 and
Theorem 4

d ( ) i
— (cosx) = —sinx
dx

Figure 2.35 shows another way to visualize this result.

EXAMPLE 4

a) y =5x +cosx
dy
dx

d Sx) + d ( ) Sum Rul
= —(5x)+ —(co

dx dx COS X um Rule

=5 —sinx
b) y = sinx cos x
. d d .
—— =sinx —(cosx) + cos x —(sin x) Product Rule
dx dx

= sinx (— sinx) + cos x (Cos x)

= cos?x — sin’ x



148 Chapter 2: Derivatives

|

.\I\N\I\I\
WAMAAAAAM

Rest
position

B

B A AAAAAAAAAA
I
()

Position at
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2.36 The body in Example 5.

v=-5sint s=S5cost

=
Iy
N|‘§"

Ry

=3

2.37 The graphs of the position and
velocity of the body in Example 5.

COS x

c = —
) ¥ 1 —sinx

. d d .
d (1 —sinx)—(cosx) — cosx—(1 — sinx)
—y = dx dx Quotient Rule

dx (1 —sinx)?
(1 —sinx)(—sinx) — cos x(0 — cos x)
- (1 — sinx)?
2(11_—_832%5 sin*x +cos?x = 1
—sinx
1
T 1_sinx a

Simple Harmonic Motion

The motion of a body bobbing up and down on the end of a spring is an example
of simple harmonic motion. The next example describes a case in which there are
no opposing forces like friction or buoyancy to slow the motion down.

EXAMPLE 5 A body hanging from a spring (Fig. 2.36) is stretched 5 units
beyond its rest position and released at time ¢ = 0 to bob up and down. Its position
at any later time ¢ is

s = 5cost.

What are its velocity and acceleration at time #?

Solution We have

Position: s =5cost
d d d
Velocity: v= d—: = 5(5 cost) = SE(cos t) = —5sint
_ dv

d d
Acceleration: a = 7 (—S5sint) = —SZ(sin t) = —5Scost.

T dt
Here is what we can learn from these equations:

1. As time passes, the body moves up and down between s = 5 and s = —5 on
the s-axis. The amplitude of the motion is 5. The period of the motion is 27w,
the period of cosz.

2. The function sin ¢ attains its greatest magnitude (1) when cost = 0, as the
graphs of the sine and cosine show (Fig. 2.37). Hence, the body’s speed,
|v| = 5]sint|, is greatest every time cost = 0, i.e., every time the body passes
its rest position.

The body’s speed is zero when sint = (. This occurs at the endpoints of
the interval of motion, when cost = +1.

3. The acceleration, a = —Scost, is zero only at the rest position, where the
cosine is zero. When the body is anywhere else, the spring is either pulling
on it or pushing on it. The acceleration is greatest in magnitude at the points
farthest from the origin, where cost = +1. 4
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Jerk

A sudden change in acceleration is called a “jerk.” When a ride in a car or a bus
is jerky, it is not that the accelerations involved are necessarily large but that the
changes in acceleration are abrupt. Jerk is what spills your soft drink. The derivative
responsible for jerk is d>s/dt3.

Definition
Jerk is the derivative of acceleration. If a body’s position at time ¢ is s =
S (@), the body’s jerk at time ¢ is

Recent tests have shown that motion sickness comes from accelerations whose
changes in magnitude or direction take us by surprise. Keeping an eye on the road
helps us to see the changes coming. A driver is less likely to become sick than a
passenger reading in the backseat.

EXAMPLE 6

a) The jerk of the constant acceleration of gravity (g = 32 ft/sec?) is zero:
d
= —(g)=0.
j=7

We don’t experience motion sickness if we are just sitting around.
b) The jerk of the simple harmonic motion in Example 5 is

'—da—d( 5cost)
TS w T @ S
= Ssint.

It has its greatest magnitude when sin# = %1, not at the extremes of the
displacement but at the origin, where the acceleration changes direction and
sign. o

The Derivatives of the Other Basic Functions

Because sinx and cos x are differentiable functions of x, the related functions

sinx 1
tanx = secx =

CcOoS X Ccos x

COS X 1
cotx = — cscx = ——

sinx sin x

are differentiable at every value of x at which they are defined. Their derivatives,
calculated from the Quotient Rule, are given by the following formulas.
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Notice the minus signs in the derivative
formulas for the cofunctions.

d d
—(tanx) = sec’x (6) —(secx) = secxtanx (7)
dx dx
d ) d
—(cot x) = —csc"x  (8) —(cscx) = —cscxcotx  (9)
dx dx

To show how a typical calculation goes, we derive Eq. (6). The other derivations
are left to Exercises 67 and 68.

EXAMPLE 7  Find dy/dx if y = tan x.

Solution

d
d—(tanx) = d_ = Rule
X X

cos? x
coSx cosx — sinx (—sinx)

d . . d
d [ sinx COS X I (sinx) —sinx I (cosx) Quotient
cosXx

cos? x

cos? x + sin® x

cos? x

1 2
= =sec’x
cos? x U

EXAMPLE 8 Find y” if y = secx.

Solution
y =secx
y = secxtanx Eq. (7)
" d
y’" = —(secx tanx)
dx
d d
= secx—(tanx) + tanx —(sec x) Product Rule
dx dx
= secx (sec® x) + tan x (sec x tan x)
= sec’ x + sec x tan® x a
EXAMPLE 9

d d
a) —Bx+cotx) =3+ —(cotx) =3 —csc’x
dx dx

d 2 d d
b) o (—————) = —(2cscx) = 2E(cscx)

sin x dx

= 2(—cscxcotx) = —2CsCx cotx d



y
3_
_ tan2x
5x
2._.
1._
<2
= L 51 x
1|7 0 w1
4 4
_1..__
_2_
-3

2.38 The graph of y = (tan 2x)/5x steps

across the y-axis at y = 2/5 (Example 11).
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Continuity of Trigonometric Functions

Since the six basic trigonometric functions are differentiable throughout their do-
mains they are also continuous throughout their domains by Theorem 1, Section
2.1. This means that sin x and cos x are continuous for all x, that sec x and tan x are
continuous except when x is a nonzero integer multiple of 7 /2, and that csc x and
cotx are continuous except when x is an integer multiple of . For each function,
lim,_,. f(x) = f(c) whenever f(c) is defined. As a result, we can calculate the
limits of many algebraic combinations and composites of trigonometric functions
by direct substitution.

EXAMPLE 10
- 2 +secx /2 +secO V241 V3 /3
1 = = = e— = -
P cos (r — tan x) cos(mr —tan0) cos(m —0) -1 a

Other Limits Calculated with Theorem 4

The equation limg_,o(sin6)/6 = 1 holds no matter how 6 may be expressed:

. sinx . sin7x
lim — =1, 6 =ux; lim =1, 6="7x;
=0 X =0 Tx

Asx—> 0,0 —>0 Asx—>0,0—->0
. sin(2/3)x
im Sn(2/3)x

im0 =1, 6=(2/3)x

Asx —> 0,0 —>0

Knowing this helps us calculate related limits involving angles in radian measure.

EXAMPLE 11
. . Eq. (2) docs not apply to the original
a) lim sin 2x — lim (2/5) - sin2x fraction. We need a 2. in the denominator.,
3—0 x T 50 (2/5) . 5% not a Sx. We produce it by multiplying
. numerator and denominator by 2/5.
2 . sin2x
= — lim Now Eq. (2) applics
5x>0 2x G- (2 app
2 1) 2
S5 S
. tan2x . sin 2x 1 oin 2x
b) lim = lim . tan 2 = S
x—0 X x—=0 5x cos2x cos 2

. sin2x . 1
= | lim lim
x—0 Sx x—0 COS2x
_ 2 1 2
“\5 cos0 5

See Fig. 2.38. a

Part (a) and continuity of cosa
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. EXAMPLE 12
Applications
The occurrence of the function (sinx)/x in sin (l‘ _ _) Seth =1— (1/2)
calculus is not an isolated event. The function lim —— <7 Then 6 — 0 as
arises in such diverse fields as quantum 1=>m/2) 4 T t — (1/2).
physics (where it appears in solutions of the
wave equation) and electrical engineering (in ) sin @
signal analysis and signal filter design) as = gl_l;% 0 1
well as in the mathematical fields of
differential equations and probability theory.
Exercises 2.4
Derivatives Limits
In Exercises 1-12, find dy/dx. Find the limits in Exercises 27-32.
3
1. y=—10x +3cosx 2, y=—+5sinx 27. lim sin l_l
X x—2 X 2
1
3. y=cscx —4/x +7 4. y=xzcotx—F 28. lim/G«/l-i—cos(chscx)
x——n
= (secx + tan x)(sec x — tan x) 29. lim sec [cosx + 7 tan ( i ) - 1]
6. y = (sinx + cos x) sec x *=0 4secx
t
7,y = X 8 y= X 30. lim sin (—”if"L)
1+ cotx 1+sinx x>0 tanx — 2secx
4 1 cos X X :
9, y= — 10. v = . st
V= Cosx T anx Y x 1 cosx 31. lim tan (1 P
11. y = x?sinx + 2x cosx — 2sinx 20
12. y = x?cosx — 2xsinx —2cosx 32. lim COS(sin0>
In Exercises 13-16, find ds/dt. . e .
reises nd ds/ s Find the limits in Exercises 33-48.
13.s=t;mt—t 14. s =1t —'sect+1 . sin v/26 i sin kt “ -
15. s = +csct 16. s = sint . gl_r)r(l) ——ﬁ . II_IS constan
1 —csct 1 —cost 3
. sin3y .
In Exercises 17-20, find dr/d6. 35. ;I—rf(l) 4y 36. hlig)l- sin 3k
17. r =4 — 6%siné 18. r = 0siné + cosb tan 2 2t
’ o rEvshETee 37. lim 38. lim —
19. r = secHcsch 20. r = (1 +secH)sinb =0 x =0 tanf
. xcsc2x . 2
In Exercises 21-24, find dp/dq. 39. ll_rf(l) o5 5% 40. }l_r)r(l) 6x*(cot x)(csc 2x)
1 2 _ i
2. p=5+— 22. p=(l+cscq)cosq 41. lim X txcosx 42. lim A oxtsinx
cotg x—0 sinxcosx x>0 2x
sing + cosg V tang sin (1 — cost) sin (sin k)
2. p=—— 24 p=—"— im o W im —
cosg 1 +tang 43. }l—{% 1 —cost 4. ’111_1)1(1) sinh
25. Find y" if (a) y = cscx, (b) y =secx. sind sin 5x
. . 4 4 . 45, lim — 46. lim —
26. Find y® = d*y/dx* if (@) y = —2sinx, (b) y =9cosx. 90 sin20 x>0 sin4x



tan 3x

47. lim —
x>0 sin 8x

sin3ycotSy

48. lim
y—»0  ycotdy

Tangent Lines

In Exercises 49-52, graph the curves over the given intervals, together
with their tangents at the given values of x. Label each curve and
tangent with its equation.

49. y=sinx, —3n/2<x<2n
x=-m,0, 31/2

50. y=tanx, —7/2<x<m/2
x=-m/3,0,7/3

51. y=secx, —n/2<x<m/2
x=-m/3, /4

52. y=1+4cosx, —3n/2<x<2m
x=-m/3,37/2

Do the graphs of the functions in Exercises 53—-56 have any horizontal
tangents in the interval 0 < x < 27 ? If so, where? If not, why not?
You may want to visualize your findings by graphing the functions

with a grapher.
53. y=x+sinx 54, y = 2x +sinx

55. y=x —cotx 56. y =x+2cosx

57. Find all points on the curve y = tanx, —7 /2 < x < /2, where g

the tangent line is parallel to the line y = 2x. Sketch the curve
and tangent(s) together, labeling each with its equation.

58. Find all points on the curve y = cotx,0 < x < 7, where the
tangent line is parallel to the line y = —x. Sketch the curve and
tangent(s) together, labeling each with its equation.

In Exercises 59 and 60, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

59. 60.
y y

2 —

1 —

] L1 x
0 1 a2
2
y=4-+cotx — 2cscx
(Generated by Mathematica) Il | [
0 Z_{ 1 2 3

y=1+2cscx + cotx
(Generated by Mathematica)
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Simple Harmonic Motion

The equations in Exercises 61 and 62 give the position s = f(z) of
a body moving on a coordinate line (s in meters, ¢ in seconds). Find
the body’s velocity, speed, acceleration, and jerk at time ¢t = 7 /4 sec.

61. s =2 — 2sint 62. s =sint 4 cost
Theory and Examples
63. Is there a value of ¢ that will make
i2
sin” 3x
o=y 170
c, x=0
continuous at x = 0? Give reasons for your answer.

64. Is there a value of b that will make

@) = x+b, x<0

EX) =1 cos x, x>0

continuous at x = 0? differentiable at x = 0? Give reasons for
your answers.

999 725
(cos x) 66. Find I

67. Derive the formula for the derivative with respect to x of

65. Find (sin x)

dx99

a) secx b) cscx.

68. Derive the formula for the derivative with respect to x of cotx.

Grapher Explorations
69. Graph y = cosx for —7 < x < 2m. On the same screen, graph
sin{x + k) — sinx
- h
for h=1,0.5,0.3, and 0.1. Then, in a new window, try & =
—1,-0.5, and —0.3. What happens as » — 07?2 as & — 07?
What phenomenon is being illustrated here?
70. Graph y = —sinx for —7 < x < 27. On the same screen, graph
cos(x +h) —cosx
h
for h =1,0.5,0.3, and 0.1. Then, in a new window, try z =

—1,-0.5, and —0.3. What happens as A — 072 as A — 07?
What phenomenon is being illustrated here?

71

Centered difference quotients. The centered difference quo-
tient
fx+h)— flx—h)
2h

is used to approximate f’(x) in numerical work because (1) its
limit as # — 0 equals f'(x) when f’(x) exists, and (2) it usually
gives a better approximation of f’(x) for a given value of 4 than
Fermat’s difference quotient

Fa+h) - f()

—



154 Chapter 2: Derivatives

See the figure below.

y
Slope = f'(x)
S+ h) — f(x)
Slope = L2 T2 =12
C 7 h
|
ZaN|
_ fa+h—fx—h
i i i Slope = o
y=fx | | |
| | |
| | |
| | |
| | |
| | |
| h | A | x
o x—h X x+h

a) To see how rapidly the centered difference quotient for
f(x) =sinx converges to f'(x) =cosx, graph y = cosx
together with

_ sin (x + h) — sin(x — h)
B 2h

over the interval [—m, 27r] for £ = 1, 0.5, and 0.3. Compare
the results with those obtained in Exercise 69 for the same

values of .
b) To see how rapidly the centered difference quotient for
f(x) =cosx converges to f'(x)=—sinx, graph y =

—sinx together with
_cos(x +h)—cos(x —h)
N 2h
over the interval [—m, 2] for h = 1, 0.5, and 0.3. Compare

the results with those obtained in Exercise 70 for the same
values of h.

72. A caution about centered difference quotients. (Continua-

tion of Exercise 71.) The quotient
fx+h) —fx-h
2h
may have a limit as # — 0 when f has no derivative at x. As a
case in point, take f(x) = |x| and calculate
lim |0+ h| — |0—h|.
h—0 2h

73.

74.

75.

76.

As you will see, the limit exists even though f(x) = |x| has no
derivative at x = 0.

Graph y = tan x and its derivative together on (—m /2, 7 /2). Does
the graph of the tangent function appear to have a smallest slope?
a largest slope? Is the slope ever negative? Give reasons for your
answers.

Graph y = cotx and its derivative together for 0 < x < 7. Does
the graph of the cotangent function appear to have a smallest
slope? a largest slope? Is the slope ever positive? Give reasons
for your answers.

Graph y = (sinx)/x, y = (sin2x)/x, and y = (sin4x)/x to-
gether over the interval —2 < x < 2. Where does each graph
appear to cross the y-axis? Do the graphs really intersect the
axis? What would you expect the graphs of y = (sin5x)/x and
y = (sin (—3x))/x to do as x — 0?7 Why? What about the graph
of y = (sinkx)/x for other values of k? Give reasons for your
answers.

Radians vs. degrees. What happens to the derivatives of sin x
and cos x if x is measured in degrees instead of radians? To find
out, take the following steps.

a)  With your graphing calculator or computer grapher in degree
mode, graph
sinh

f(h):T

and estimate lim,_o f(h). Compare your estimate with
7 /180. Is there any reason to believe the limit should be

/1807
b) With your grapher still in degree mode, estimate
. cosh—1
MR

¢) Now go back to the derivation of the formula for the deriva-
tive of sin x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain
for the derivative?

d) Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

e) The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. Try
it. What are the second and third degree-mode derivatives
of sin x and cos x?

The Chain Rule

We now know how to differentiate sinx and x> — 4, but how do we differentiate a
composite like sin (x> — 4)? The answer is, with the Chain Rule, which says that
the derivative of the composite of two differentiable functions is the product of their
derivatives evaluated at appropriate points. The Chain Rule is probably the most
widely used differentiation rule in mathematics. This section describes the rule and
how to use it. We begin with examples.
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1. —-10—3sinx 3. —cscxcotx—— 5.0

Vx

2
—csc? x
9. 4 tan x sec x —csc2 x 11, x% cos x

" (1 4+ cot x)?

-2 t cott
13. sec? t—1 15. % 17. —6 (9 cos 0 + 2 sin 6)

19. sec 6 csc O (tan @ — cot §) =sec> @ —csc? 6 21. sec? g
23.sec’q 25.a) 2csc x —csc x  b) 2sec® x —sec x
27.0 29. -1 31.0 331 35 34 37.2 39.112
41. 2 43.1 45.1/2 47. 3/8

49, 51.

y=x
\ 1+ y=sinx

L L 1 L > x
w2 n>3n/2£2n
y==1 @3r2,-1)

53. Yes,at x =7 55. No

7 (3G

y
' A 1
, y=tanx ’
' 1
1 1
' l.. )
1 1
; (/4 1) 1
' )
' b13
: y—2).'—§+l
| 1 1 [ FRTES
T X
-72 -4 w4 )
. '
y=2k 4] '
s 2 |
-1} '
(~m/d, -1 ,
.
1

59.a) y=-—x+4+7m/2+2 b) y=4—43
61. —/2 m/sec, v/2 m/sec, v/2 m/sec?, /2 misec? 63. c=9
65. sin x



