

2. Convert the following from logarithmic to exponential form:		
a) $\log_{\chi} 9 = 3$	Answer: $x^3 = 9$	

Answer: $\log_{10}100 = 2 \text{ or } \log 100 = 2 \text{ (no base}$

b) log <i>x</i> = -1	Answer: $10^{-1} = x$ (no base means base of 10)
c) $\ln x = -1$	Answer: $e^{-1} = x$ (ln means log to the base of e)

3. Solve for *x* (hint: first, convert each from logarithmic to exponential form)

a) $\log_9 x = 1$	Answer: $x = 9$
b) $\log_a x = 1$	Answer: $x = a$
c) $\ln x = 1$	Answer: $x = e$ (why?)

e) $10^2 = 100$

means base of 10)

4. Solve for *x* (hint: first, convert each from logarithmic to exponential form)

a) $\log_9 x = 0$ Answer: x = 1b) $\log_x x = 0$ Answer: x = 1c) $\ln x = 0$ Answer: x = 1 (why?) $\log_a a = 1$; $\log_e e = 1$ or $\ln e = 1$ $\log_a 1 = 0$; $\log_e 1 = 0$ or $\ln 1 = 0$

Properties of logarithms

Rule	Formula	Example
I) Multiplication	$\ln (AB) = \ln A + \ln B$	$\ln 5x = \ln 5 + \ln x$
II) Division	$\ln\frac{A}{B} = \ln A - \ln B$	$\ln 5 / x = \ln 5 - \ln x$
III) Power	$\ln A^p = p \ln A$	$\ln 5^{\chi} = x \ln 5$

Example 1 : Express in term of logarithms:

a)
$$\log (x^2 y^2)$$
 b) $\log \frac{x^3 y^2}{z^4}$ c) $\log \frac{\sqrt{x^3 y^2}}{z^3 w^5}$

Example 2: Express as a single logarithm:

a) $3 \ln x + 4 \ln y - 3 \ln z$ b) $2 \log x - 3$ $\log y + 2 \log z$

Example 3: Solve for *x*:

5

a) $5^{x} = 10$ b) $\ln x = 4$ c) $3^{x} =$ d) $\log_{3} (2x-1) - \log_{3} (x-4) = 2$ e) $\log_{3} (x-4) + \log_{3} (x+4) = 3$

f) $\log x + \log (x - 3) = 1$ g) $\log_2 x + \log_2 (x - 2) = 3$

Example 4: Solve for *x*:

a) $\ln x = -2$ $e^{t(t+1)} = 1$ d) $\log_4(x+6) - \log_4 x = 2$ e) $\ln(2t+1) + \ln(2t-1) = 0$ f) $\ln(t-1) = 3$ g) $5e^{x-3} = 4$ Answers (not on order): (2/5); (4); (1/e^2); (e^3+1); (0, -1); (1/\sqrt{2}); (3+ln) (0.8); (0.3466); (2.322)