Republic of Iraq

Ministry of Higher Education
and Scientific Research
Al-Mustaqbal University College
Computer Engineering Techniques Department

Subject: Fundamentals of Electrical Engineering First Class Lecture Seven

By

Dr. Jaber Ghaib

MSc. Sarah Abbas

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering Dr.: Jaber Ghaib & M.Sc. Sarah Abbas

SarahAbbas@mustaqbal-college.edu.iq

نظرية ثيفنين Thevenin's Theeorem

نظرية ثيفنين هي نظرية لتحليل الداو ائر الكهربائية.

فائرة ثیفنین هی دائرة تحتوی علی مقاومة تسمی مقاومه ثیفنین (R_{Th}) ومصدر جهد ثیفنین (E_{Th}) , ای ان ای دائرة كهربائية ذات تيار مستمر يمكن استبدالها بدائرة ثيفنين وهي عباره عن حاوية لها مخرجين (a) و (b) كما بالشكل.

المقاومة (R_{Th}) مو صله على التو الى مه المصدر (E_{Th}).

والشكل التالي يوضح كيفية اختزال دائرة كهربائية لتصبح دائرة ثيفنين

والخطوات التالية توضح طريقة تحويل دوائر كهربائية للوصول الى دائرة ثيفنين:

- ١. اقطع الجزء من الدائة المراد تحديد مكافئ ثيفنين له.
 - ٢. حدد المخر جين a و b للدائر ة.
- ٣. اوجد قيمة (R_{Th}) وذلك باستبدال جميع المصادر في الدائرة, حيث يستبدل مصدر الجهد بدائرة مغلقة (Short circuit) مصدر التيار بدائرة مفتوحه (Open circuit) وبالتالي يمكن حساب المقاومة (R_{Th}) ما بين النقطتين (R

Page 2 of 10

Department of Computer Engineering Techniques (Stage: 1) Fundamentals of Electrical Engineering Dry John Chail & M. Sa. Sarah Abbas

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas Sarah Abbas@mustaqbal-college.edu.iq

 (E_{Th}) وذلك بارجاع جميع المصادر الى حالتها الاصلية ومن ثم ايجاد فرق الجهد ما بين النقطتين a

وفي حال وجود اكثر من مصدر جهد نستخدم طريقة التراكيب لايجاد (E_{Th}) الكلية.

٥. نرسم دائرة ثيفنين المكافئة مع ارجاع الجزء المحذوف من الدائرة الاصلية.

Example 1: Find the Thevenin equivalent to the circuit at terminals a and b

Sol: Step 1. Find RW. Short-circuit the voltage source V = 10V. R_1 and R_2 are in parallel.

Find V_{Th} . V_{Th} is the voltage across terminals a and b, which is the same as the voltage drop across resistance R_2 .

Department of Computer Engineering Techniques (Stage: 1)

Fundamentals of Electrical Engineering Dr.: Jaber Ghaib & M.Sc. Sarah Abbas Sarah Abbas@mustaqbal-college.edu.iq

$$I = \frac{V}{R_1 + R_2} = \frac{10}{4 + 6} = \frac{10}{10} = 1 \text{ A}$$
 $V_{Th} = V_2 = IR_2$
 $V_{Th} = 1(6) = 6 \text{ V}$ Ans.

Example 2: To the circuit of Example 1, add a resistor load R_L of 3.60 and find the current I_L through the load and voltage V_L across the load.

Sol:

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

$$I_L = \frac{V_{Th}}{R_{TH} + R_L} = \frac{6}{2.4 + 3.6} = \frac{6}{6} = 1 \text{ A}$$

$$V_L = I_L R_L = 1(3.6) = 3.6 \text{ V} \qquad Ans.$$

Example 3: Find the load current I_L and the load voltage V_L in the circuit of fig below by use of Thevenin's theorem.

Sol: Step 1.Find R _{Th}. Remove the load R_L. Short-circuit the voltage source of 120V. Short-circuiting the battery also short-circuits the 10Ω resistor, leaving two 20Ω resistors in parallel.

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

Step 2: Find V_{Th} . The two 20Ω resistors are in series across the 120-V line. Since the

voltage is the same across equal resistances and V_{Th} is the open-circuit voltage at a and b across the 20Ω resistor,

$$V_{Th}=\frac{120}{2}=60V$$

Step 3. Draw the equivalent circuit with R_L and find I_L and V_L .

$$I_L = \frac{V_{Th}}{R_L + R_{Th}} = \frac{60}{30 + 10} = \frac{60}{40} = 1.5 \text{ A}$$
 Ans.
 $V_L = I_L R_L = 1.5(30) = 45 \text{ V}$ Ans.

Page 6 of 10

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

Example 4: Find the Thevenin equivalent to the circuit at terminals a and b

Sol: Step 1. Find R_{Th} by replace the voltage source with short circuit

Step 2: find V_{Th} which is the voltage across the 6 Ω resistance

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

$$E_{Th} = \frac{8V \times 6\Omega}{6\Omega + 4\Omega} = \frac{48}{10} = 4.8V$$

Example 5: Find the Thevenin equivalent to the circuit at terminals a and b

Sol: Step 1. Find R_{Th} by replace the voltage source with short circuit

 $0.8k\Omega // 4k\Omega // 6k\Omega = 0.6k\Omega$

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

$$R_{Th} = 0.6k\Omega + 1.4k\Omega = 2k\Omega$$

Step 2: find V_{Th} with the effect of (6V) voltage source

The resistance (1.4k Ω) neglected because the circuit is open. So V_{Th} is the voltage across the 6 Ω resistance

$$4k\Omega//6k\Omega = 2.4k\Omega$$

By using voltage divider rule

$$E'_{Th} = \frac{6V \times 2.4k\Omega}{2.4k\Omega + 0.8k\Omega} = \frac{14.4}{3.2} = 4.5V$$

the effect of (10V) voltage source

Page 9 of 10

Dr.: Jaber Ghaib & M.Sc. Sarah Abbas SarahAbbas@mustaqbal-college.edu.iq

$$0.8k\Omega//6k\Omega = 0.706k\Omega$$

$$E''_{Th} = \frac{10V \times 0.706k\Omega}{0.760k\Omega + 4k\Omega} = \frac{7.06}{4.706} = 1.5V$$

Since E'_{Th} and E''_{Th} are opposite to each other the

$$E_{Th} = E'_{Th} - E''_{Th}$$

$$E_{Th} = 4.5 - 1.5 = 3V$$

