AL MUSTAQBAL UNIVERSITY

A S Wik MR B NIa
AUEN A yal)

Subject: Object oriented programming Il
Class: Second
Lecturers: Dr. Dunia H. Hameed , Dr. Maytham N. Meqdad

Object Oriented Programming (I1) — First

Lecture

Overview of OOP Terminology

Class: A user-defined prototype for an object that defines a set of attributes that
characterize any object of the class. The attributes are data members (class variables and
instance variables) and methods, accessed via dot notation.

Class variable: A variable that is shared by all instances of a class. Class variables are
defined within a class but outside any of the class's methods. Class variables aren't used as
frequently as instance variables are.

Data member: A class variable or instance variable that holds data associated with a class
and its objects.

Function overloading: The assignment of more than one behavior to a particular function.
The operation performed varies by the types of objects (arguments) involved.

Instance variable: A variable that is defined inside a method and belong s only to the
current instance of a class.

Inheritance: The transfer of the characteristics of a class to other classes that are derived
from it.

Instance: An individual object of a certain class. An object obj that belong s to a class
Circle, for example, is an instance of the class Circle.

Instantiation: The creation of an instance of a class.

Method: A special kind of function that is defined in a class definition.

Object: A unique instance of a data structure that's defined by its class. An object

comprises both data members (class variables and instance variables) and methods.

Operator overloading: The assignment of more than one function to a particular operator.

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Page 2

Object Oriented Programming (II) 2023-2024

Creating Classes:

The class statement creates a new class defmition. The name of the class immediately follows the keyword class

followed by a colonas follows:

class ClassName:
'Optional class documentation string'
class suite

e The class has a documentation string, which canbe accessed via ClassName.___doc__

e The class_suite consists of all the component statements defining class members, data attributes and

fumctions.

Example:

Following is the example of a simple Python class:

class Employee:
'Common base class for all employees'
empCount = 0

def _ init__ (self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount (self):
print "Total Employee %d" % Employee.empCount

def displayEmployee (self):
print "Name : ", self.name, ", Salary: ", self.salary

o The variable empCount is a class variable whose value would be shared among all instances of a this class.

This canbe accessed as Employee.empCount frominside the class or outside the class.

¢ The firstmethod__ init () is a special method, whichis called class constructor or initialization method
that Python calls whenyou create a new instance of this class.

¢ Youdeclare other class methods like normal functions with the exception that the first argument to each
method is self. Python adds the self argument to the list for you; you don't need to include it when you call
the methods.

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Page 3

Object Oriented Programming (II) 2023-2024

Creating instance objects:

To create instances of a class, you call the class using class name and pass inwhatever arguments its ___init
method accepts.

"This would create first object of Employee class"
empl = Employee ("Zara", 2000)
"This would create second object of Employee class"
emp2 = Employee ("Manni"™, 5000)

Accessing attributes:

Youaccess the object's attributes using the dot operator with object. Class variable would be accessed using
class name as follows:

empl .displayEmployee ()
emp2 .displayEmployee ()
print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together:

#!/usr/bin/python

class Employee:
'Common base class for all employees'
empCount = 0

def init_ (self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount (self) :
print "Total Employee %d" % Employee.empCount

def displayEmployee (self):
print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"
empl = Employee("Zara", 2000)

"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)

empl .displayEmployee ()

emp? .displayEmployee ()

print "Total Employee %d" % Employee.empCount

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad Page 4

Object Oriented Programming (II) 2023-2024

Whenthe above code is executed, it produces the following result:

Name : Zara ,Salary: 2000
Name : Manni ,Salary: 5000
Total Employee 2

Youcanadd, remove or modify attributes of classes and objects at any time:

empl.age = 7 # Add an 'age' attribute.
empl.age = 8 # Modify 'age' attribute.
del empl.age # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you canuse following functions:
* The getatir(obj, name[, default]) : to access the attribute of object.
¢ The hasattr(obj,name) : to check if an attribute exists or not.
* The setattr(obj,name,value) : to setanattribute. If attribute does not exist, then it would be created.

¢ The delattr(obj, name) : to delete anattribute.

hasattr (empl,

('age"')
getattr (empl,

(

(

Returns true if 'age' attribute exists
Returns value of 'age' attribute
Set attribute 'age' at 8

Delete attribute 'age'

setattr (empl,
delattr (empl,

#
#
#
#
Built-In Class Attributes:

Every Pythonclass keeps following built-in attributes and they canbe accessed using dot operator like any other
attribute:

e __ dict__ :Dictionary containing the class's namespace.
¢ _ doc___ :Class documentation string or None if undefined.
¢ _ name__:Class name.

¢ _ module__ : Module name inwhich the class is defined. This attribute is "___main__ " ininteractive
mode.

e _ bases___ :Apossibly empty tuple containing the base classes, inthe order of their occurrence in the
base class list.

For the above class let's try to access all these attributes:

#!/usr/bin/python

class Employee:
'Common base class for all employees'
empCount = 0

def init (self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount (self):
print "Total Employee %d"™ % Employee.empCount

def displayEmployee (self):
print "Name : ", self.name, ", Salary: ", self.salary

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Page 5

Object Oriented Programming (II) 2023-2024

print "Employee. doc_ :", Employee._ doc_
print "Employ name :", Employee. name

print "Employ module Btls hmployeET moaﬁle__
print "Employe bases :", Employee.g:gasesgi
print "Employee. dict :", Employee._ dict

Whenthe above code is executed, it produces the following result:

Employee._ doc__ : Common base class for all employees
Employee. name_ : Employee

Employee. module : main_

Employee. Dbases_ : ()

Employee. dict : {'_ module ': ' main ', 'displayCount':

<function displayCount at 0xb7c¢84994>, 'empCount': 2,
'displayEmployee': <function displayEmployee at 0xb7¢8441lc>,
' _doc_ ': 'Common base class for all employees',
'_init_ ': <function _ init at 0xb7c846bc>}

Destroying Objects (Garbage Collection):

Pythondeletes unneeded objects (built-intypes or class instances) automatically to free memory space. The
process by which Python periodically reclaims blocks of memory thatno longer are inuse is termed garbage
collection.

Python's garbage collector runs during programexecutionand is triggered whenanobject's reference count
reaches zero. Anobject's reference count chang es as the number of aliases that point to it changes.

Anobject's reference count increases whenit's assigned a new name or placed ina container (list, tuple or
dictionary). The object's reference count decreases whenit's deleted with del, its reference is reassigned, or its
reference goes outof scope. Whenan object's reference count reaches zero, Python collects it automatically.

a = 40 # Create object <40>

b=a ¥ Increase ref. count of <40>
c = [b] ¥ Increase ref. count of <40>
del a ¥ Decrease ref. count of <40>
b = 100 ¥ Decrease ref. count of <40>
c[0] = -1 ¥ Decrease ref. count of <40>

You normally won't notice when the garbage collector destroys anorphaned instance and reclaims its space. But
a class canimplement the specialmethod ___del (), called a destructor, thatis invoked when the instance is
about to be destroyed. This method might be used to cleanup any nonmemory resources used by aninstance.

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Page 6

Object Oriented Programming (II) 2023-2024

Example:
This __del__ () destructor prints the class name of aninstance thatis about to be destroyed:

#!/usr/bin/python

class Point:
def Aiinit{ self, x=0, y=0):

self.x b4
self.y y
def Aidelgi(self):
class_name = self. class__ ._ name_
print class_name, "destroyed"
ptl = Point()
pt2 = ptl
pt3 = ptl
print id(ptl), id(pt2), id(pt3) # prints the ids of the obejcts
del ptl
del pt2
del pt3

Whenthe above code is executed, it produces following result:

3083401324 3083401324 3083401324
Point destroyed

Note: Ideally, youshould define your classes inseparate file, then youshould import the m in your main prog ram
file using import statement. Kindly check Pvthon - Modules chapter for more details onimporting modules and
classes.

Class Inheritance:

Instead of starting fromscratch, you cancreate a class by deriving it froma preexisting class by listing the parent
class inparentheses after the new class name.

The child class inherits the attributes of its parent class, and you canuse those attributes as if they were defined in
the child class. A child class canalso override data members and methods fromthe parent.

Syntax:

Derived classes are declared muchlike their parent class; however, a list of base classes to inherit from are
givenafter the class name:

class SubClassName (ParentClassl[, ParentClass2, ...]):
'Optional class documentation string'
class_suite

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Page 7

Object Oriented Programming (II)

2023-2024

Example:

#!/usr/bin/python

class Parent: # define parent class
parentAttr = 100
def init (self):
pfznt "Calling parent constructor"

def parentMethod (self):
print 'Calling parent method'

def setAttr(self, attr):
Parent.parentAttr = attr

def getAttr(self):
print "Parent attribute :", Parent.parentAttr

class Child(Parent): # define child class
def _ init (self):
print "Calling child constructor"

def childMethod(self) :
print 'Calling child method'

c = Child() # instance of child
c.childMethod () # child calls its method
c.parentMethod () # calls parent's method
c.setAttr(200) # again call parent's method
c.getAttr () # again call parent's method

Whenthe above code is executed, it produces the following result:

Calling child constructor
Calling child method
Calling parent method
Parent attribute : 200

Similar way, youcandrive a class from multiple parent classes as follows:

class A: # define your class A
class B: # define your calss B
class C(A, B): # subclass of A and B

Youcanuse issubclass() or isinstance () functions to check a relationships of two classes and instances.

+ The issubclass(sub, sup) boolean function returns true if the givensubclass sub is indeed a subclass

ofthe superclass sup.

¢ The isinstance(obj, Class) boolean function returns true if obj is aninstance of class Class or is an

mstance ofa subclass of Class

Overriding Methods:

Youcanalways override your parent class methods. One reason for overriding parent's methods is because you

may want special or different functionality in your subclass.

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Object Oriented Programming (II)

2023-2024

Example:

#!/usr/bin/python
class Parent: # define parent class
def myMethod (self)
print 'Calling parent method'
class Child(Parent): # define child class
def myMethod (self)

print 'Calling child method'

c = Child() # instance of child
c.myMethed () # child calls overridden method

Whenthe above code is executed, it produces the following result:

Calling child method

Base Overloading Methods:

Following table lists some generic functionality that you canoverride inyour own classes:

SN Method, Description & Sample Call

1 __init__ (self [,args...])
Constructor (with any optional arg ume nts)
Sample Call: obj = className(args)

2 __del__(self)
Destructor, deletes anobject
Sample Call: dell obj

3 __repr__(self)
Evaluatable string representation
Sample Call: repr(obj)

4 __ _str__(self)
Printable string representation
Sample Call: str(obyj)

5 __cmp__ (self,x)
Object comparison
Sample Call: cmp(obj, x)

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Page 9

Object Oriented Programming (II)

2023-2024

Overloading Operators:

Suppose you've created a Vector class to represent two-dimensional vectors, what happens when you use the

plus operator to add them? Most likely Pythonwill yell at you

Youcould, however, define the _add method inyour class to performvector addition and then the plus

operator would behave as per expe ctation:
Example:

#!/usr/bin/python

class Vector:
def _ init_ (
self.a a
self.b =b

self, a, b):

def str (self) :

return 'Vector (%d, %d)' % (self.a, self.b)

def Aiaddgi(self,other):
return Vector(self.a + other.a, self.b + other.b)

vl = Vector(2,10)
v2 = Vector (5,-2)
print vl + v2

When the above code is executed, it produces the following result:

Vector (7, 8)

Data Hiding:

Anobject's attributes may or may not be visible outside the class definition. For these cases, youcanname
attributes with a double underscore prefix, and those attributes will not be directly visible to outsiders.

Example:

#!/usr/bin/python

class JustCounter:
_ secretCount = 0

def count (self):
self. secretCount += 1

print self. secretCount

counter = JustCounter ()
counter.count ()
counter.count ()

print counter._ secretCount

Whenthe above code is executed, it produces the following result:

1
2
Traceback (most recent call last):
File "test.py", line 12, in <module>
print counter._secretCount
AttributeError: JustCounter instance has no attribute '_ secretCount'

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad

Page 10

Object Oriented Programming (II) 2023-2024

Pythonprotects those members by internally chang ing the name to include the class name. Youcanaccess such
attributes as object._className__attrName. If youwould replace your last line as following, thenit would work

print counter. JustCounter secretCount

Whenthe above code is executed, it produces the following result:

1
2
2

Prepared by Dr. Dunia H. Hameed, Dr. Maytham N. Meqdad Page 11

