## Chapter 6

# Multiple Access Techniques

By: Dr Musaddaq Mahir Abdul Zahra

#### Dr Musaddaq Mahir Abdul Zahra

## **6.1 Multiplexing**

Multiplexing in 4 dimensions

- $\Box$  space (s<sub>i</sub>)
- □ time (t)
- □ frequency (f)
- □ code (c)

Goal: multiple use of a shared medium

Important: guard spaces needed!



Separation of the whole spectrum into smaller frequency bands A channel gets a certain band of the spectrum for the whole time Advantages:



A channel gets the whole spectrum for a certain amount of time

#### Advantages:

- only one carrier in the medium at any time
- throughput high even for many users



## <u>Disadvantages:</u>

precisesynchronizationnecessary



C 4

Combination of both methods

A channel gets a certain frequency band for a certain amount of time

Example: GSM

#### Advantages:

- better protection against tapping
- protection against frequency selective interference



but: precise coordination required



Each channel has a unique code

All channels use the same spectrum at the same time

### Advantages:

- bandwidth efficient
- no coordination and synchronization necessary
- good protection against interference and tapping

#### <u>Disadvantages:</u>

- lower user data rates
- more complex signal regeneration

Implemented using spread spectrum technology



## **6.2 Multiple Division Techniques**

To accommodate a number of users, many traffic channels need to be made available.

In principle, there are three basic ways to have many channels within an allocated bandwidth:

- ☐ Frequency Division Multiple Access (FDMA)
- ☐ Time Division Multiple Access (TDMA)
- □ Code Division Multiple Access (CDMA)

- ❖ System employs different carrier frequency FDMA system.
- ❖ System uses distinct time TDMA system.
- ❖ System uses different code CDMA system.
- ❖ In wireless communications, it is necessary to utilize limited frequency bands at the same time, allowing multiple users(MSs) to share radio channel simultaneously.
- ❖ To provide simultaneous two-way communication (duplex communication):
  - ☐ Frequency division duplexing (FDD)
  - ☐ Time Division Duplexing (TDD)

FDMA uses FDD, TDMA & CDMA uses TDD & FDD



Fig. 7 Block diagram of a QPSK transmitter.



Fig. 8 Block diagram of a QPSK receiver.



Fig. 9 Block diagram of an MSK transmitter. Note that  $m_l(t)$  and  $m_Q(t)$  are offset by  $T_b$ .



Fig. 10 Block diagram of an MSK receiver.



# **6.4 Wireless Systems**

By: Dr Musaddaq Mahir Abdul Zahra



# 6.4.1 IS-95 Interfaces

- A Interface (BSC-MSC) .. This interface is between the BSC and the MSC. It supports both the control plane and user plane
- Abis Interface (BTS-BSC)—This is the interface between the BSC and BTS. This is internal interface and generally proprietary
- B Interface (MSC-VLR) This interface is defined by TIA IS-41
- C Interface (MSC-HLR) This interface uses IS-41 messaging as well
- D Interface (HLR-VLR) HLR-VLR signaling is based on IS-41 as well. It sits on top of SS7
- E Interface (MSC-MSC)— Inter MSC signaling is defined in IS-41
- L interface (MSC-IWF) This interface allows the ability for circuit switched data in second generation networks
- Um Interface (BS-MS) This is the air interface between the mobile and the network



# 6.4.2 Multiple Access

- Code-Division Multiple Access CDMA
  - unique digital codes are used to differentiate subscribers
  - codes are shared by both MS and BS
  - all users share the same range of radio spectrum

#### Benefits of CDMA:

- 1) Capacity increases: 4 to 5 times (GSM)
- 2) Improved call quality
- 3) Simplified system planning
- 4) Enhanced privacy

#### Dr Musaddaq Mahir Abdul Zahra



- 5) Improved coverage characteristics
- 6) Increased talk time for portables
- 7) Bandwidth on demand

## 6.4.3 Disadvantages

- Receiver must be precisely synchronized with the transmitter to apply the decoding correctly
- Receiver must know the code and must separate the channel with user data from the background noise composed of other signals and environmental noise



# 6.4.4 CDMA for DSSS





# 6.4.5 What is GPRS?

- General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly improves and simplifies wireless access to packet data networks
- GPRS applies packet radio principal to transfer user data packets in an efficient way b/w MS & external packet data network



## **GPRS Mobile Stations:**

New Mobile Station are required to use GPRS services because existing GSM phones do not handle the enhanced air interface or packet data. A variety of MS can exist, including a high-speed version of current phones to support high-speed data access, a new PDA device with an embedded GSM phone, and PC cards for laptop computers. These mobile stations are backward compatible for making voice calls using GSM



## Benefits of GPRS

- New Data Services
- High Speed (Data Rate 14.4 115 kbps)
- Efficient use of radio bandwith (Statistical Multiplexing)
- Circuit switching & Packet Switching can be used in parallel
- Constant connectivity

## **GPRS System Architecture**



# 6.5 WiFi, Bluetooth and ZigBee

By: Dr Musaddaq Mahir Abdul Zahra

# 6.5.1 Wireless Technology Differences

| Standard                  | Family  | Downlink<br>(Mbps) | Uplink<br>(Mbps) | Coverage |
|---------------------------|---------|--------------------|------------------|----------|
| WiFi                      | 802.11  | 11/54/150/30       | 00               | 100m     |
| WiMAX                     | 802.16e | 144                | 35               | 10km     |
| UMTS (3G)<br>/HSPA (3.5G) | 3GPP    | 14.4               | 5.76             | 30km     |
| LTE (4G)                  | 3GPP    | 360                | 80               | 30km     |

## **6.5.2** Diference between WiFi & WiMAX

## WiFi vs. WiMAX

|               | IEEE 802.11  | IEEE 802.16a |
|---------------|--------------|--------------|
| Max Speed     | 54Mbps (a&g) | 10-100Mbps   |
| Range         | 100m         | 40 km        |
| Coverage      | Indoor       | Outdoor      |
| Users         | Hundred      | Thousand     |
| Service Level | None         | Yes          |

#### Dr Musaddaq Mahir Abdul Zahra

# 6.5.3 Bluetooth vs. WiFi

|                          | Bluetooth                                                                                                                                          | Wifi                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Specifications authority | Bluetooth SIG                                                                                                                                      | IEEE, WECA                                                                                           |
| Year of development      | 1994                                                                                                                                               | 1991                                                                                                 |
| Bandwidth                | Low ( 800 Kbps )                                                                                                                                   | High (11 Mbps )                                                                                      |
| Hardware requirement     | Bluetooth adaptor on all the devices connecting with each other                                                                                    | Wireless adaptors on all the devices of the network, a wireless router and/or wireless access points |
| Cost                     | Low                                                                                                                                                | High                                                                                                 |
| Power Consumption        | Low                                                                                                                                                | High                                                                                                 |
| Frequency                | 2.4 GHz                                                                                                                                            | 2.4 GHz                                                                                              |
| Security                 | It is less secure                                                                                                                                  | It is more secure                                                                                    |
| Range                    | 10 meters                                                                                                                                          | 100 meters                                                                                           |
| Primary Devices          | Mobile phones, mouse, keyboards, office and industrial autom ation devices                                                                         | Notebook computers, desktopcompu<br>ters, servers                                                    |
| Ease of Use              | Fairly simple to use. Can be used to connect upto seven devices at a time. It is easy to switch between devices or find and connect to any device. | It is more complex and requires configuration of hardware and software.                              |

# 6.5.4 Bluetooth vs. ZigBee

|                   | Bluetooth (v1)       | ZigBee           |
|-------------------|----------------------|------------------|
| Protocol Stack    | 250 kb               | < 32 kb (4kb)    |
| Range             | 10 - 100 meters      | 30 - 100 meters  |
| Link Rate         | 1 Mbps               | 250 kbps         |
| Battery           | rechargeable         | non-rechargeable |
| Devices           | 8                    | 2^16             |
| Air Interface     | FHSS                 | DSSS             |
| Usage             | frequently           | infrequently     |
| Network Join Time | long                 | short            |
| Extendibility     | no                   | yes              |
| Security          | PIN, 64 bit, 128 Bit | 128 bit, AES     |