Electronics

CTE 207

Lecture 18

- Voltage Divider Bias -(2023-2024)
Dr. Zaidoon AL-Shammari
Lecturer / Researcher
zaidoon.waleed@mustaqbal-college.edu.iq

Voltage-Divider Bias

$>$ The voltage-divider bias configuration of Figure below is such a network.
$>$ If analyzed on an exact basis the sensitivity to changes in beta is quite small.
$>$ If the circuit parameters are properly chosen, the resulting levels of IC and VCE can be almost totally independent of beta.
$>$ There are two methods that can be applied to analyze the voltage divider configuration.

Exact Analysis

Voltage-divider bias configuration.

Defining the Q-point for the voltage divider bias configuration.
$>$ The input side of the network of Figure above can be redrawn as shown in Figure below for the dc analysis.
$>$ The thevenin equivalent network for the network to the left of the base terminal can then be found in the following manner:

$>$ Rth: The voltage source is replaced by a shortcircuit equivalent as shown in Figure below.

$$
R_{\mathrm{Th}}=R_{1} \| R_{2}
$$

$>$ Eth: The voltage source VCC is returned to the network and the open-circuit Thevenin voltage of Figure below determined as follows:

Applying the voltage-divider rule:

$$
E_{\mathrm{Th}}=V_{R_{2}}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}
$$

Determining RTh

Determining ETh
$>$ The Thevenin network is then redrawn as shown in Figure below, and IBQ can be determined by first applying Kirchhoff's voltage law in the clockwise direction for the loop indicated:

$$
E_{\mathrm{Th}}-I_{B} R_{\mathrm{Th}}-V_{B E}-I_{E} R_{E}=0
$$

Substituting $I_{E}=(\beta+1) I_{B}$ and solving for I_{B} yields

$$
I_{B}=\frac{E_{\mathrm{Th}}-V_{B E}}{R_{\mathrm{Th}}+(\beta+1) R_{E}}
$$

Inserting the Thevenin equivalent circuit
$>$ Once IB is known, the remaining quantities of the network can be found in the same manner as developed for the emitter-bias configuration.

That is,

$$
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

> Which is exactly the same. The remaining equations for VE, VC, and VB are also the same as obtained for the emitter-bias configuration.

Determine the DC bias voltage VCE and the current IC for the voltagedivider configuration of the Figure below.
Sol:

$$
\begin{aligned}
R_{\mathrm{Th}} & =R_{1} \| R_{2} \\
& =\frac{(39 \mathrm{k} \Omega)(3.9 \mathrm{k} \Omega)}{39 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega}=3.55 \mathrm{k} \Omega \\
E_{\mathrm{Th}} & =\frac{R_{2} V_{C C}}{R_{1}+R_{2}} \\
& =\frac{(3.9 \mathrm{k} \Omega)(22 \mathrm{~V})}{39 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega}=2 \mathrm{~V} \\
I_{B} & =\frac{E_{\mathrm{Th}}-V_{B E}}{R_{\mathrm{Th}}+(\beta+1) R_{E}} \\
& =\frac{2 \mathrm{~V}-0.7 \mathrm{~V}}{3.55 \mathrm{k} \Omega+(141)(1.5 \mathrm{k} \Omega)}=\frac{1.3 \mathrm{~V}}{3.55 \mathrm{k} \Omega+211.5 \mathrm{k} \Omega} \\
& =6.05 \mu A
\end{aligned}
$$

Solution

Al-Mustaqbal
University

$$
\begin{aligned}
I_{C} & =\beta I_{B} \\
& =(140)(6.05 \mu \mathrm{~A}) \\
& =\mathbf{0 . 8 5} \mathbf{~ m A} \\
V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
& =22 \mathrm{~V}-(0.85 \mathrm{~mA})(10 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega) \\
& =22 \mathrm{~V}-9.78 \mathrm{~V} \\
& =\mathbf{1 2 . 2 2} \mathbf{V}
\end{aligned}
$$

$>$ The input section of the voltage-divider configuration can be represented by the network of the Figure below.
> The resistance Ri is the equivalent resistance between base and ground for the transistor with an emitter resistor RE.

Partial-bias circuit for calculating the approximate base voltage VB

Approximate Analysis

The voltage across R_{2}, which is actually the base voltage, can be determined using the voltage-divider rule (hence the name for the configuration). That is,

$$
V_{B}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}
$$

Since $R_{i}=(\beta+1) R_{E} \cong \beta R_{E}$ the condition that will define whether the approximate approach can be applied will be the following:

$$
\beta R_{E} \geq 10 R_{2}
$$

In other words, if β times the value of R_{E} is at least 10 times the value of R_{2}, the approximate approach can be applied with a high degree of accuracy.

Once V_{B} is determined, the level of V_{E} can be calculated from

$$
V_{E}=V_{B}-V_{B E}
$$

Approximate Analysis

and the emitter current can be determined from

$$
I_{E}=\frac{V_{E}}{R_{E}}
$$

and

$$
I_{C_{Q}} \cong I_{E}
$$

The collector-to-emitter voltage is determined by

$$
V_{C E}=V_{C C}-I_{C} R_{C}-I_{E} R_{E}
$$

but since $I_{E} \cong I_{C}$,

$$
V_{C E_{Q}}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

Example 2

Repeat the analysis of Example 1 by using the approximate technique, and compare solutions for ICQ and VCEQ

Sol:

$$
\begin{aligned}
\beta R_{E} & \geq 10 R_{2} \\
(140)(1.5 \mathrm{k} \Omega) & \geq 10(3.9 \mathrm{k} \Omega) \\
210 \mathrm{k} \Omega & \geq 39 \mathrm{k} \Omega(\text { satisfied }) \\
V_{B} & =\frac{R_{2} V_{C C}}{R_{1}+R_{2}} \\
& =\frac{(3.9 \mathrm{k} \Omega)(22 \mathrm{~V})}{39 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega} \\
& =2 \mathrm{~V}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& V_{E}=V_{B}-V_{B E} \\
&=2 \mathrm{~V}-0.7 \mathrm{~V} \\
&=1.3 \mathrm{~V} \\
& I_{C Q} \cong I_{E}=\frac{V_{E}}{R_{E}}=\frac{1.3 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=\mathbf{0 . 8 6 7} \mathbf{~ m A}
\end{aligned}
$$

compared to 0.85 mA with the exact analysis. Finally,

$$
\begin{aligned}
V_{C E_{Q}} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
& =22 \mathrm{~V}-(0.867 \mathrm{~mA})(10 \mathrm{kV}+1.5 \mathrm{k} \Omega) \\
& =22 \mathrm{~V}-9.97 \mathrm{~V} \\
& =\mathbf{1 2 . 0 3} \mathbf{V}
\end{aligned}
$$

$>$ The results for ICQ and VCEQ are certainly close, and considering the actual variation in parameter values one can certainly be considered as accurate as the other.
$>$ The larger the level of Ri compared to R2, the closer the approximate to the exact solution.

AL- MUSTAQBAL UNIVERSITY COMPUTER TECHNIQUES ENGINEERING

Al-Mustaqbal
University

