

COLLEGE OF ENGINEERING AND TECHNOLOGIES ALMUSTAQBAL UNIVERSITY

Electronics CTE 207

Lecture 17

- Voltage Feedback Bias - (2023 - 2024)

Dr. Zaidoon AL-Shammari

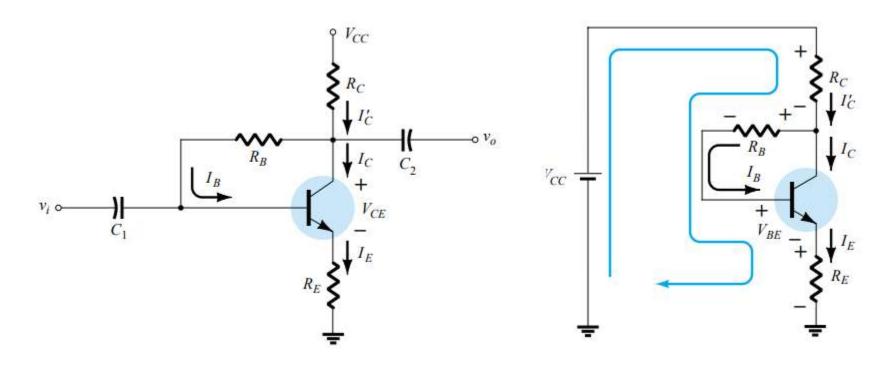
Lecturer / Researcher

zaidoon.waleed@mustaqbal-college.edu.iq

Voltage Feedback Bias

- An improved level of stability can also be obtained by introducing a feedback path from collector to base as shown in Figure below.
- Although the Q-point is not totally independent of beta (even under approximate conditions), the sensitivity to changes in beta or temperature variations is normally less than encountered for the fixed-bias or emitter-biased configurations.
- ➤ The analysis will again be performed by first analyzing the base emitter loop with the results applied to the collector emitter loop.

Voltage Feedback Bias



DC bias circuit with voltage feedback

Base – emitter loop for the network

Base – Emitter Loop

- The Figure above shows the base—emitter loop for the voltage feedback configuration.
- ➤ Writing Kirchhoff's voltage law around the indicated loop in the clockwise direction will result in

$$V_{CC} - I'_{C}R_{C} - I_{B}R_{B} - V_{BE} - I_{E}R_{E} = 0$$

Base – Emitter Loop

$$V_{CC} - I_C' R_C - I_B R_B - V_{BE} - I_E R_E = 0$$

Substituting
$$I'_C \cong I_C = \beta I_B$$
 and $I_E \cong I_C$

$$V_{CC} - \beta I_B R_C - I_B R_B - V_{BE} - \beta I_B R_E$$

$$= 0$$

$$V_{CC} - \beta I_B (R_C + R_E) - I_B R_B - V_{BE} = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{\beta (R_C + R_E) + R_B}$$

Collector – Emitter Loop

- The collector—emitter loop for the network of Figure below is provided.
- Applying Kirchhoff's voltage law around the indicated loop in the clockwise direction will result in

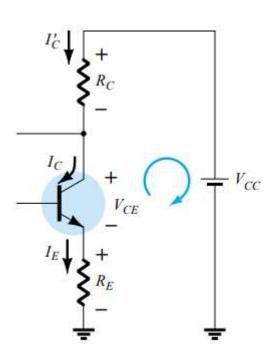
$$I_E R_E + V_{CE} + I'_C R_C - V_{CC} = 0$$

Since $I'_C \cong I_C$ and $I_E \cong I_C$, we have

$$I_C(R_C + R_E) + V_{CE} - V_{CC} = 0$$

and

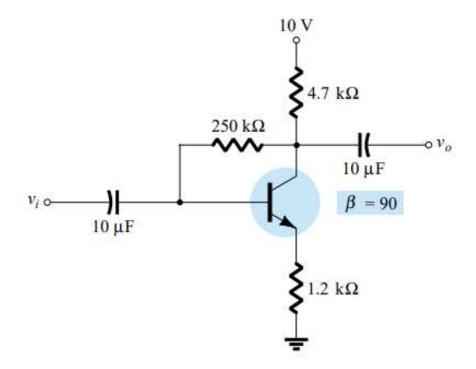
$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$



Collector – emitter loop

Example 1

Determine the quiescent levels of IC and VCE for the network of the Figure below.



Network for Example 1

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + \beta(R_{C} + R_{E})}$$

$$= \frac{10 \text{ V} - 0.7 \text{ V}}{250 \text{ k}\Omega + (90)(4.7 \text{ k}\Omega + 1.2 \text{ k}\Omega)}$$

$$= \frac{9.3 \text{ V}}{250 \text{ k}\Omega + 531 \text{ k}\Omega} = \frac{9.3 \text{ V}}{781 \text{ k}\Omega}$$

$$= 11.91 \mu\text{A}$$

$$I_{C_{Q}} = \beta I_{B} = (90)(11.91 \mu\text{A})$$

$$= 1.07 \text{ mA}$$

$$V_{CE_{Q}} = V_{CC} - I_{C}(R_{C} + R_{E})$$

$$= 10 \text{ V} - (1.07 \text{ mA})(4.7 \text{ k}\Omega + 1.2 \text{ k}\Omega)$$

$$= 10 \text{ V} - 6.31 \text{ V}$$

$$= 3.69 \text{ V}$$

Example 2

Repeat Example 1 by using a beta of 135 (50% more than Example 1).

Sol:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + \beta(R_{C} + R_{E})} = \frac{10 \text{ V} - 0.7 \text{ V}}{250 \text{ k}\Omega + (135)(4.7 \text{ k}\Omega + 1.2 \text{ k}\Omega)}$$

$$= \frac{9.3 \text{ V}}{250 \text{ k}\Omega + 796.5 \text{ k}\Omega} = \frac{9.3 \text{ V}}{1046.5 \text{ k}\Omega}$$

$$= 8.89 \mu\text{A}$$

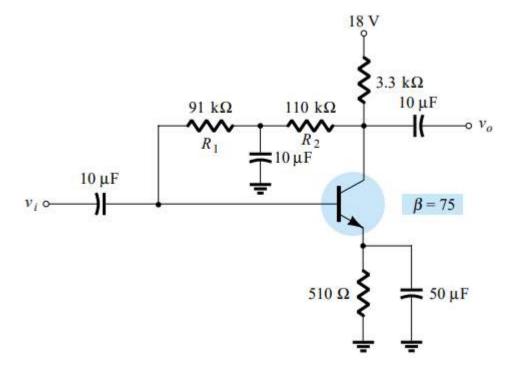
and
$$I_{C_Q} = \beta I_B$$

 $= (135)(8.89 \ \mu\text{A})$
 $= 1.2 \ \text{mA}$
and $V_{CE_Q} = V_{CC} - I_C(R_C + R_E)$
 $= 10 \ \text{V} - (1.2 \ \text{mA})(4.7 \ \text{k}\Omega + 1.2 \ \text{k}\Omega)$
 $= 10 \ \text{V} - 7.08 \ \text{V}$
 $= 2.92 \ \text{V}$

- ➤ Even though the level of beta increased 50%, the level of ICQ only increased 12.1% while the level of VCEQ decreased about 20.9%.
- ➤ If the network were a fixed-bias design, a 50% increase in would have resulted in a 50% increase in ICQ and a dramatic change in the location of the Q poin.

Example 3

Determine the DC level of IB and VC for the network of the Figure below.



Network for Example 3

In this case, the base resistance for the DC analysis is composed of two resistors with a capacitor connected from their junction to ground.

For the dc mode, the capacitor assumes the open-circuit equivalence and RB = R1 + R2.

Solving for IB gives

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + \beta(R_{C} + R_{E})}$$

$$= \frac{18 \text{ V} - 0.7 \text{ V}}{(91 \text{ k}\Omega + 110 \text{ k}\Omega) + (75)(3.3 \text{ k}\Omega + 0.51 \text{ k}\Omega)}$$

$$= \frac{17.3 \text{ V}}{201 \text{ k}\Omega + 285.75 \text{ k}\Omega} = \frac{17.3 \text{ V}}{486.75 \text{ k}\Omega}$$

$$= 35.5 \mu\text{A}$$

$$I_C = \beta I_B$$

= (75)(35.5 μ A)
= 2.66 mA
 $V_C = V_{CC} - I'_C R_C \cong V_{CC} - I_C R_C$
= 18 V - (2.66 mA)(3.3 k Ω)
= 18 V - 8.78 V
= 9.22 V

AL- MUSTAQBAL UNIVERSITY COMPUTER TECHNIQUES ENGINEERING

