J-1-8-1 all o ala

AL MUSTAQBAL UNIVERSIT+

A S Wik MR B NIa
A0l sl

Lecture: (4)

Subject: Object oriented programming Il
Class: Second
Lecturers: Dr. Dunia H. Hameed , Dr. Maytham N. Meqdad

Object Oriented Programming (II) 2022-2023

Object Oriented Programming (11) — Fourth

Lecture

3.4.3 Doubly Linked List Operations

Problem Description

The program creates a doubly linked list and presents the user with a menu to

perform various operations on the list.

Problem Solution

1.
2.
3.

Create a class Node with instance variables data and next.

Create a class DoublyLinkedList with instance variables first and last.

The variable first points to the first element in the doubly linked list while
last points to the last element.
Define methods get node, insert after, insert before, insert at beg,

insert_at_end, remove and display.

. get_node takes an index as argument and traverses the list from the first

node that many times to return the node at that index.

. The methods insert_after and insert_before insert a node after or before

some reference node in the list.

. The methods insert_at_beg and insert_at_end insert a node at the first or

last position of the list.

. The method remove takes a node as argument and removes it from the list.
. The method display traverses the list from the first node and prints the data

of each node.

10. Create an instance of DoublyLinkedList and present the user with a menu

to perform operations on the list.

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 34

Object Oriented Programming (II)

2022-2023

Program/Source Code

class Node:
def init (self, data):
self.data = data
self.next = None

self.prev = Mone

class DoublylLinkedList:
def init (self):
self.first = None

self.last None

def get node(self, index):
current self.first
for i in range(index):
if current is None:
return None
current current.next

return current

def insert_after(self, ref_node, new node):
new_node.prev = ref_node
if ref_node.next is MNone:
self.last = new node
else:
new_node.next = ref node.next
new_node.next.prev = new_node

ref node.next = new_node

def insert_before(self, ref_node, new_node):
new_node.next = ref_node
if ref_node.prev is MNone:
self.first = new_node
else:
new_node.prev = ref node.prev
new_node.prev.next = new_node

ref node.prev = new_node

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 35

Object Oriented Programming (II)

2022-2023

def insert_at beg(self, new node):
if self.first is None:
self.first = new _node
self.last = new_node
else:

self.insert before(self.first, new_node)

def insert _at end(self, new node):
if self.last is None:
self.last = new node
self.first = new_node
else:

self.insert after(self.last, new node)

def remove(self, node):
if node.prev is None:
self.first = node.next
else:

node.prev.next = node.next

def display(self):
current = self.first
while current:
print(current.data, end |

current current.next

a_dllist = DoublylLinkedList()

print(‘'Menu")

print('insert <data> after <index>')
print('insert <data> before <index>")
print('insert <data> at beg')
print(’'insert <data> at end')
print(’'remove <index>")

print(’'quit")

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 36

Object Oriented Programming (II) 2022-2023

while True:
print('The list: ', end)
a_dllist.display()
print()
do = input('What would you like to do? ").split()

operation = do[@].strip().lower()

if operation ‘insert':
data = int(do[1])
position = do[3].strip().lower()
new_node = Node(data)
suboperation = do[2].strip().lower()
if suboperation ‘at':
if position "beg":
a_dllist.insert_at beg(new node)
elif position ‘end’:
a_dllist.insert_at end(new_node)
else:
index = int(position)
ref node = a_dllist.get node(index)
if ref _node is None:
print('No such index.")

continue

if suboperation ‘after’:
a_dllist.insert_after(ref_node, new_node)
elif suboperation ‘before”:

a_dllist.insert_before(ref_node, new_node)

elif operation ‘remove’ :
index int(do[1])
node = a_dllist.get_node(index)
if node is None:
print('No such index.")
continue

a_dllist.remove(node)

elif operation ‘quit’:
break

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 37

Object Oriented Programming (II)

2022-2023

Program Explanation

1. An instance of DoublyLinkedL.ist is created.

2. The user is presented with a menu to perform various operations on the list.

3. The corresponding methods are called to perform each operation.

Runtime Test Cases

Case 1:

Menu

insert <data> after <index>

insert <data> before <index>

insert <data> at beg
insert <data> at end
remove <index>

quit

The list:

What would you like to
The list: 5

What would you like to
The list: 3 5

What would you like to
The list: 3 51

What would you like to
The list: 3 5 10 1
What would you like to
The list: 3 58 10 1
What would you like to
The list: 3 5 @ 10
What would you like to
The list: 3 @ 1@

What would you like to

Mo such index.
The list: 2 @ 1@

do?

do?

do?

do?

do?

do?

do?

do?

insert 5 at beg

insert 3 at beg

insert 1 at end

insert 10 after 1

insert @ before 2

remove 4

remove 1

remove 5

What would you like to do? quit

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 38

Object Oriented Programming (II) 2022-2023

Case 2:

Menu

insert <data> after <index>

insert <data> before <index>

insert <data> at beg

insert <data> at end

remove <index>

quit

The list:

What would you like to do? insert 3 after ©
No such index.

The list:

What would you like to do? insert 2 at beg
The list: 2

What would you like to do? insert 3 before o
The list: 3 2

What would you like to do? remove ©

The list: 2

What would you like to do? remove ©

The list:

What would you like to do? quit

3.4.4 Circular Doubly Linked List Operations
Problem Description
The program creates a circular doubly linked list and presents the user with a
menu to perform various operations on the list.
Problem Solution
1. Create a class Node with instance variables data and next.
2. Create a class CircularDoublyLinkedList with instance variable first.
3. The variable first points to the first element in the circular doubly linked
list.
4. Define methods get_node, insert_after, insert_before, insert_at_beg,

insert_at_end, remove and display.

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad Page 39

Object Oriented Programming (II) 2022-2023

5. get_node takes an index as argument and traverses the list from the first
node that many times to return the node at that index. It stops if it reaches
the first node again.

6. The methods insert_after and insert_before insert a node after or before
some reference node in the list.

7. The methods insert_at _beg and insert_at_end insert a node at the first or
last position of the list. insert_at beg modifies the variable first to point to
the new node.

8. The method remove takes a node as argument and removes it from the list.

9. The method display traverses the list from the first node and prints the data
of each node until it reaches the first node again.

10. Create an instance of CircularDoublyLinkedList and present the user with
a menu to perform operations on the list.

Program/Source Code

Node:
__init_ (self, data):
self.data data
self.next = Mone

self.prev = None

CircularDoublylLinkedList:
__init_ (self):

self.first None

get node(self, index):
current self.first
i range(index):
current current.next
current self.first:
None

current

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 40

Object Oriented Programming (II)

2022-2023

def insert after(self, ref node, new node):
new_node.prev = ref node
new_node.next = ref_node.next
new_node.next.prev = new_node

ref_node.next = new node

def insert before(self, ref node, new node):

self.insert after(ref node.prev, new node)

def insert_at end(self, new node):
if self.first is None:
self.first = new_node
new_node.next = new_node
new_node.prev = new_node
else:

self.insert after(self.first.prev, new_node)

def insert_at beg(self, new node):
self.insert_at _end(new_node)

self.first = new node

def remove(self, node):
if self.first.next self.first:

self.first None

else:
node.prev.next = node.next
node.next.prev = node.prev
if self.first node:

self.first node.next

def display(self):
if self.first is None:
return
current self.first
while True:
print(current.data, end)
current current.next
if current self.first:
break

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 41

Object Oriented Programming (II)

2022-2023

a_cdllist = CcircularDoublylLinkedList()

print('Menu’)
print(‘'insert
print(‘'insert
print(‘'insert

print(‘'insert

<data> after <index>')
<data> before <index>")
<data> at beg')
<data> at end')

print('remove <index>")
print('quit’)
while True:

print('The list: ', end)

a_cdllist.display()

print()

do = input('what would you like to do? ').split()

operation = do[@].strip().lower()
if operation "insert':
data = int(do[1])

position = do[3].strip().lower()

new_node = Node(data)

suboperation = do[2].strip().lower()

if suboperation ‘at':

if position "beg":

a_cdllist.insert_at beg(new node)

elif position ‘end"’:

a_cdllist.insert_at end(new_node)

else:

index

int(position)

ref _node a_cdllist.get node(index)

if ref_node is None:

print('No such index.')

continue

if suboperation ‘after':

a_cdllist.insert_after(ref _node, new node)

elif suboperation ‘before”:

a_cdllist.insert_before(ref node, new node)

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 42

Object Oriented Programming (II) 2022-2023

elif operation ‘remove’:
index = int(do[1])
node = a_cdllist.get_node(index)
if node is None:
print('No such index.')
continue

a_cdllist.remove(node)

elif operation ‘quit’:

break
Program Explanation
1. An instance of CircularDoublyLinkedList is created.
2. The user is presented with a menu to perform various operations on the list.

3. The corresponding methods are called to perform each operation.

Case 1:

Menu

insert <data> after <index>

insert <data> before <index>

insert <data> at beg

insert <data> at end

remove <index>

quit

The list:

What would you like to do? insert 3 at beg
The list: 3

What would you like to do? insert 5 at end
The list: 3 5

What would you like to do? insert 1 after @
The list: 3 1 5

What would you like to do? insert 2 after 2
The list: 3 15 2

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 43

Object Oriented Programming (II)

2022-2023

What would you like
The list: 1 5 2
What would you like
The list: 1 5

What would you like
The list: 1

What would you like
The list:

What would you like

Case 2:

Menu

to

to

to

to

to

do? remove

do? remove

do? remove

do? remove

do? quit

insert
insert
insert

insert

<data>» after <index>
<data> before <index>
<data>» at beg

<data>» at end

remove <index>

quit

The list:

What would you like
No such index.

The list:

What would you like
The list: 1@

What would you like
The list: 1 16

What would you like
The list: 1 16 5
What would you like
The list: 9 1 18 5
What would you like
The list: 9 1 1@
What would you like

to

to

to

to

to

to

to

do?

do?

do?

do?

do?

do?

do?

insert

insert

insert

insert

insert

remove

quit

3 after ©

10 at end

1 at beg

5 before @

9 at beg

Prepared by Dr. Dunia H. Hameed, Dr.Maytham N. Meqdad

Page 44

