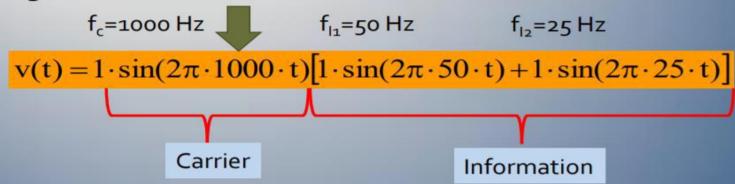

Al-Mustaqbal University College of Science

Intelligent Medical System Department


Lecture 8- Aliasing Process
Asst. Prof. Dr. Mehdi Ebady Manaa

Sampled Signals

Frequency Spectrum

Sampling is modulation. Shifts all signal frequency components and generates harmonics

Modulation produces sums and differences of carrier and information frequencies

 $f_{h1} = f_c \pm f_{l1}$ for the 1st information frequency $f_{h2} = f_c \pm f_{l1}$ for the 2nd information frequency $f_{hi} = f_c \pm f_{li}$ for the i-th information frequency

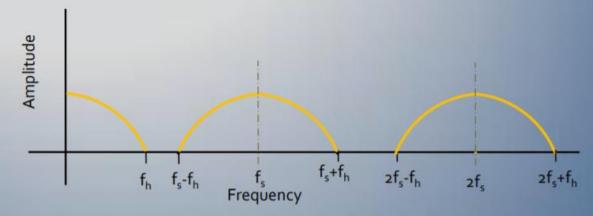
Lesson 6_et438b.ppt

9

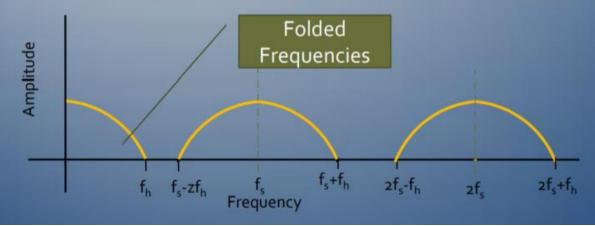
Nyquist Frequency and Minimum Sampling Rate

To accurately reproduce the analog input data with samples the sampling rate, f_s, must be twice as high as the highest frequency expected in the input signal. (Two samples per period) This is known as the Nyquist frequency.

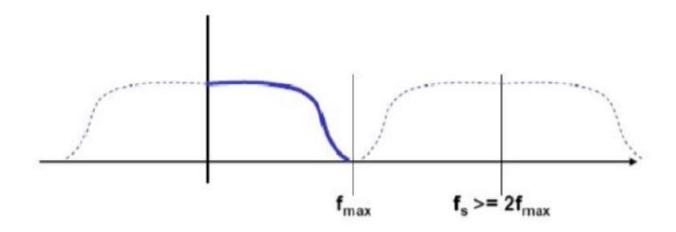
$$f_{s(min)} = 2f_h$$


Where

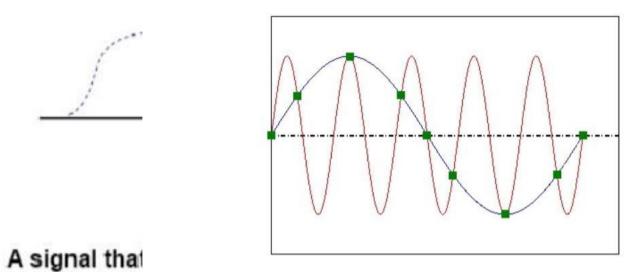
f_h = the highest discernible f component in
 input signal
f_{s(min)} = minimum sampling f


Nyquist rate is the <u>minimum</u> frequency and requires an ideal pulse to reconstruct the original signal into an analog value

Sampled Signal Frequency Spectrum


Sampling with $f_s > 2f_h$

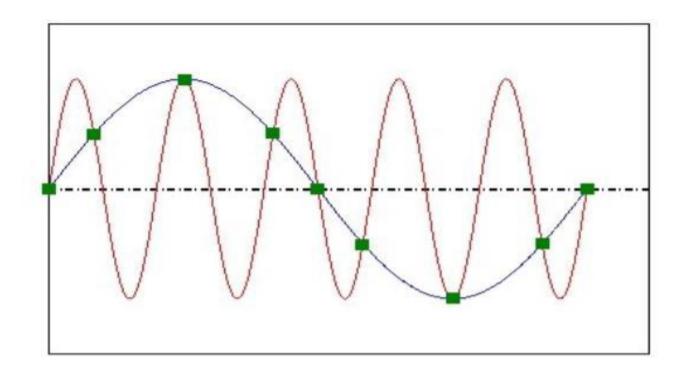
Sampling at less than 2fh causes aliasing and folding of sampled signals.


Nyquist Sampling Theorem

A signal that has energy to f_{max} must be sampled at a rate (2 x f_{max}) or greater Sampling creates an "alias" copy of a signal

Nyquist Sampling Theorem

Nyquist Frequency and Aliasing (1)



or greater

High frequency signal to be sampled by a low sampling rate may cause to "fold" the sampled data into a false lower frequency signal. This phenomena is known as *aliasing*.

If the sampling rate is less than twice the highest frequency, the alias overlaps the original, creating distortion

Nyquist Frequency and Aliasing (1)

High frequency signal to be sampled by a low sampling rate may cause to "fold" the sampled data into a false lower frequency signal. This phenomena is known as *aliasing*.

Aliasing Formulas

$$f_a=$$
 Alias frequency $f_N=$ Folding frequency (Nyquist frequency) $f_N=f_s/2$ $f_a=(f_a/f_N)f_N$

Given that sampling frequency equals 250Hz and the ratio of folding frequency to alias frequency equals 0.5, find the alias frequency.

Solution:

$$f_s = 250$$

 $f_a / f_N = 0.5$
 $f_N = 250 / 2 = 125$
 $f_a = (f_a / f_N) f_N = 0.5 \times 125 = 62.5 Hz$

Nyquist Frequency and Aliasing

Example: Given the following signal, determine the minimum sampling rate (Nyquist frequency)

$$s(t) = 1.5 \cdot \sin(175\pi t) + 3 \cdot \sin(250\pi t) + 0.5\cos(800\pi t) + 1.75 \cdot \sin(900\pi t)$$

Convert the radian frequency to frequency in Hz by dividing values by 2π

$$f_1 = \frac{175\pi}{2\pi} = 87.5 \text{ Hz}$$
 $f_2 = \frac{250\pi}{2\pi} = 125 \text{ Hz}$ $f_3 = \frac{800\pi}{2\pi} = 400 \text{ Hz}$ $f_4 = \frac{900\pi}{2\pi} = 450 \text{ Hz}$

Find the highest frequency component: 450 Hz

$$f_{s(min)} = 2f_h$$

Aliased Frequencies

Sampling analog signal below 2f_h produces false frequencies. Aliased frequencies determined by:

$$\begin{aligned} f_{alias} &= \left| f_{I} - n \cdot f_{s} \right| \\ 0 &\leq f_{alias} \leq f_{nyquist} \\ f_{nyquist} &= \frac{f_{s}}{2} \end{aligned}$$

Where: f_l = sampled information signal with f_l > $f_{nyquist}$ f_s = sampling frequency (Hz) f_s = sampling harmonic number f_{alias} = aliased frequency $f_{nyquist}$ = one-half sampling frequency

Samples/Period and Aliasing

Correct signal representation requires at least two samples/period

$$\begin{aligned} N_s &= \frac{f_s}{f_I} = \frac{T_I}{T_s} \\ f_s &> f_I \text{ and } T_I > T_s \end{aligned}$$

Where N_s = number input signal samples per period of sampling frequency

 $f_s = sampling frequency (Hz)$

 f_1 = highest information signal frequency (Hz)

 $T_s = \text{sampling period}, 1/f_s, \text{ (seconds)}$

 T_1 = period information signal's highest frequency (1/ f_1)

Sampling/Aliasing Examples

Example 1: A f_s =1000 Hz sampling frequency samples an information signal of f_l =100 Hz . Determine samples/period, the resulting recovered signal ,and aliased frequencies if present

Determine the number of samples/ period

$$N_s = \frac{1000 \text{ Hz}}{100 \text{ Hz}} = \frac{0.01 \text{ S}}{0.001 \text{ S}} = 10 \text{ samples/period}$$

Above Nyquist rate of 2

$$f_{\text{nyquist}} = \frac{f_s}{2} = \frac{1000 \text{ Hz}}{2} = 500 \text{ Hz}$$

Signals below 500 Hz reproduced without aliasing

View the frequency spectrum using FFT of samples

Sampling/Aliasing Examples

Example 2: A f_s=60 Hz sampling frequency samples an information signal of f_I=100 Hz . Determine samples/period, the resulting recovered signal ,and aliased frequencies if present

Determine the number of samples/ period

$$N_s = \frac{60 \text{ Hz}}{100 \text{ Hz}} = \frac{0.01 \text{ S}}{0.001666 \text{ S}} = 0.6 \text{ samples/period}$$
 Below Nyquist rate of 2

Aliased signals will occur due to low sampling rate

$$f_{\text{nyquist}} = \frac{f_s}{2} = \frac{60 \text{ Hz}}{2} = 30 \text{ Hz}$$

Signals below 30 Hz reproduced without aliasing

Now compute the aliased frequency for 1st sampling harmonic

Sampling/Aliasing Examples

Alias frequencies for 1st harmonic of sampling f (n=1)

$$\begin{aligned} f_{\text{alias}} &= \left| f_{\text{I}} - n \cdot f_{\text{s}} \right| \\ 0 &\leq f_{\text{alias}} \leq f_{\text{nyquist}} \\ f_{\text{nyquist}} &= \frac{f_{\text{s}}}{2} \end{aligned}$$

$$f_{\text{alias}} = |100 \text{ Hz} - 1.60 \text{ Hz}| = 40 \text{ Hz}$$

$$f_{\text{nyquist}} = \frac{60 \text{ Hz}}{2} = 30 \text{ Hz}$$

$$0 \le f_{\text{alias}} \le 30 \text{ Hz}$$

The f_{alias} is outside range o-30 Hz, (40 Hz > 30 Hz) No recovered signal

Find alias frequencies of 2^{nd} sampling harmonic f(n=2)

$$f_{alias} = |100 \text{ Hz} - 2.60 \text{ Hz}| = 20 \text{ Hz}$$

The f_{alias} in range o-30 Hz, 20 Hz recovered signal