Lab 4 Viscosity

Viscosity=?

Asst.Lec. Rusul Ahmed

Introduction

Viscosity: is an expression of the resistance to flow of a system under an applied stress. The more viscous a liquid ,the greater the applied force is required to make it flow at a particular rate.

This lab is concerned with the flow properties of dilute colloidal systems and the manner in which viscosity data can be used to obtain the molecular weight of materials comprising the disperse phase. Viscosity studies also provide information
 regarding the shape of the particles in solution.

Materials classify according to the type of flow and deformation into:

- Examples of Newtonian system: water or any simple liquid (gelatin solution, olive oil, glycerin, castor oil, chloroform and ethyl alcohol).
- Examples of Non Newtonian system: complex liquid or systems which contain polymers (colloidal solution, emulsion, liquid suspension and ointments).

The classification depends on whether or not their flow properties are according to the Newton's law of flow.

Einstein equation

$\eta=\eta_{0}(1+2.5 \phi) \ldots \ldots \ldots \ldots . .(1)$
η :is the viscosity of the dispersion.
η_{0} :is the viscosity of the dispersed medium
ϕ :is the volume fraction of colloidal particles.
The volume fraction is defined as the volume of the particles divided by the total volume of the dispersion. It is therefore equivalent to concentration term.

$$
\phi=\frac{\text { volume of particles }}{\text { total volume of dispersion }}
$$

Several viscosity coefficients may be defined with respect to this equation. These include relative viscosity $\left(\boldsymbol{\eta}_{\boldsymbol{r e l}}\right)$, specific viscosity $\left(\boldsymbol{\eta}_{\boldsymbol{s} \boldsymbol{p}}\right)$, intrinsic viscosity $\left(\boldsymbol{\eta}_{\boldsymbol{i n t}}\right)$ and reduced viscosity $\left(\boldsymbol{\eta}_{\boldsymbol{r e d}}\right)$

$$
\begin{equation*}
\eta=\eta_{0}(1+2.5 \phi) \tag{1}
\end{equation*}
$$

divided by $\boldsymbol{\eta}_{\mathbf{0}}$

$$
\begin{gather*}
\frac{\eta}{\eta_{0}}=1+2.5 \phi . \\
\eta_{r e l}=\frac{\eta}{\eta_{0}} \\
\frac{\eta}{\eta_{0}}-1=2.5 \phi . \\
\text { And } \eta_{s p}=\frac{\eta}{\eta_{0}}-1 \\
\frac{\eta_{s p}}{\phi}=2.5 \ldots \ldots \tag{4}
\end{gather*}
$$

Since the volume fraction is directly related to concentration.

$$
\begin{equation*}
\eta_{\text {red }}=\frac{\eta_{s p}}{c} . \tag{5}
\end{equation*}
$$

$\eta_{\text {red }}=$ reduced viscosity

Where C the concentration is expressed in gram of colloidal particles per 100 ml of total dispersion

If $\frac{\eta_{s p}}{c}$ is plotted against conc. and take the line extrapolated to infinite dilution, the intercept is known as the intrinsic viscosity $\left(\eta_{\text {int }}\right)$ is used to calculate the approximate molecular weights of polymers. According to KuhnHouwink equation: $\boldsymbol{\eta}_{\text {int }}=\boldsymbol{K} \boldsymbol{M}^{\boldsymbol{\alpha}}$
Where K and α are constant of the particular polymer-
solvent system. $\mathrm{M}=$ molecular weight.

$$
\eta_{r e l}=\frac{\eta}{\eta_{0}}
$$

we have to divide by η_{w} (viscosity of water)whatever the medium $\boldsymbol{\eta}_{\boldsymbol{w}}$ viscosity of water is equal to $\mathbf{1} \mathbf{c p}$.

$$
\begin{gathered}
\text { relative viscosity }\left(\boldsymbol{\eta}_{\text {rel }}\right)=\frac{\eta}{\boldsymbol{\eta}_{\boldsymbol{w}}} \\
\text { specific viscosity }\left(\boldsymbol{\eta}_{\boldsymbol{s p}}\right)=\boldsymbol{\eta}_{\boldsymbol{r e l}}-1 \\
\text { reduced viscosity }\left(\boldsymbol{\eta}_{\text {red }}\right)=\frac{\eta_{s \boldsymbol{p}}}{c} \\
\text { * C mean concentration in } \mathrm{g} / 100 \mathrm{ml} \\
\text { intrinsic viscosity }\left(\boldsymbol{\eta}_{\text {int }}\right)=\boldsymbol{K} \boldsymbol{M}^{\alpha}
\end{gathered}
$$

Capillary

Both η_{0} and η may determine using a capillary viscometer. The viscosity of a Newtonian liquid may be determined by measuring the time required for the liquid to pass between two marks as it flows by gravity through a vertical capillary tube, known as Ostawald viscometer. The time of flow of the liquid under test is compared with the time for a liquid of known viscosity (usually water) to pass between the two marks (A---B).

the absolute viscosity of the unknown liquid, η_{1} is determined by substituting the experimental values in the equation:

$$
\frac{\eta_{1}}{\eta_{2}}=\frac{p_{1}}{p_{2}} \frac{t_{1}}{t_{2}}
$$

$\eta_{1}=$ viscosity of the unknown liquid (cp)
$\mathrm{p}_{1}=$ density of the unknown liquid
$\mathrm{t}_{1}=$ flow time in seconds for unknown liquid

$$
\eta_{2}=\text { viscosity of water }=1 \mathrm{cp}
$$

$$
\mathrm{p}_{2}=\text { density of water }=1
$$

$t_{2=}$ flow time in seconds for water

Poise and centipoise
1 cp= 0.01 poise

Experimental work

Part l: 6ring water, glycerin, 1% gelatin sofution and prepare volumetric flask($50 c c$), pipette, capillary viscometer (suspended level viscometer).

Part II:

: To determine the concentration of unknown.

Procedure:

1) Prepare different concentrations w/w of glycerin in water 2%, $5 \%, 10 \%, 15 \%, 20 \%$ and 25% (50 ml of each one).
2) Measure the η of these solutions by the viscometer knowing the density of each solution 1.003, 1.005, 1.018, 1.03, 1.037, 1.044 respectively. Then find η rel and draw curve by plotting η rel against conc. (w/w).
3) Find out the concentration of unknown from the curve by measuring its $\eta r e l$ of unknown.
4) The line started from 1 since the viscosity of water is equal to 1 $c p$. The density of glycerine is 1.26 and water $=1$.

Calculation

Conc | Density |
| :--- |
| of sol. |$\quad \boldsymbol{\eta} \mathbf{1} \quad \boldsymbol{\eta}_{\text {rel }}$

2\% 1.003

5\% 1.005
10\% 1.018

15\% 1.03
20\% 1.037
25\% 1.044
viscosity of water is equal to $1 c p$
The density of and water $=1$.
for conc 2%, if the time required for the solution was 6 seconds (t 1) and the time required for the weter was 5 seconds (t 2), the calculation will be :

$$
\frac{\eta_{1}}{\eta_{2}}=\frac{p_{1}}{p_{2}} \frac{t_{1}}{t_{2}}
$$

$\eta_{1}, \mathrm{P} 1, \mathrm{t} 1$ for the solution
$\eta_{2}, \mathrm{P} 2$, t2 for water
$\frac{\eta_{1}}{1}=\frac{1.003 * 6}{1 * 5}$
$\eta_{1}=1.203 \mathrm{cp}$
$\boldsymbol{\eta}_{\boldsymbol{r e l}}=\eta_{1} \backslash \boldsymbol{\eta}_{\boldsymbol{w}}=1.203 / 1=1.203$

* the same calculation for other concentration

Calculate the unknown concentration for solution if you know the relative viscosity of unknown conc was

$$
1.35 ?
$$

Part ll:

: To find the molecular weight of gelatine

 Procedure:1. Prepare 50 ml different concentration of gelatine (w/v) $0.2 \%, 0.4 \%$, $0.6 \%, 0.8 \%$ from $1 \%(w / v)$ gelatine stock solution.
 knowing that the density of each solution are 1.05, 1.08, 1.11, 1.2 respectively. Then find $\eta s p$ which is equal to ($\eta \mathrm{rel}-1$)
2. Plot $\boldsymbol{\eta}_{\text {red }}$ ($\eta s p /$ concentration) versus concentration (w/v) the resulted line is then extrapolated to infinite dilution to find the intrinsic viscosity which is equal to intercept of line with y axis.
3. Find the molecular weight of gelatine from the equation $\left(\boldsymbol{\eta}_{\text {int }}\right)=\boldsymbol{K} \boldsymbol{M}^{\boldsymbol{\alpha}}, K=1.7 * 10-5 \quad \alpha=1$.

Calculation

Conc	p 1	$\mathrm{t} 1(\mathrm{sec})$	$\mathrm{t} 2(\mathrm{sec})$ water	$\eta 1$	そrel	$\eta s p$ $(\eta r e l-1)$	$\eta s p$ /conc
0.2	1.05	5					
0.4	1.08		5				
0.6	1.11		5				
0.8	1.2		5				

For $0.2 \% \quad \mathrm{t} 1=5.5$ seconds

$$
\begin{aligned}
& \frac{\eta_{1}}{1}=\quad \frac{1.05 * 5.5}{1 * 5} \\
& \eta_{1}=1.071 \mathrm{cp} \\
& \begin{aligned}
\boldsymbol{\eta}_{\text {rel }} & = \\
& \eta_{1} \backslash \boldsymbol{\eta}_{\boldsymbol{w}} \\
& =1.071 \backslash 1=1.071 \\
\eta s p= & (\eta r e l \\
& -1) \\
& =(1.071-1)=0.071 \\
\boldsymbol{\eta}_{\text {red }} & =\eta s p / \text { conc } \\
& =0.071 \backslash 0.2=0.355
\end{aligned}
\end{aligned}
$$

Intercept $=\left(\boldsymbol{\eta}_{\text {int }}\right)=\boldsymbol{K} \boldsymbol{M}^{\boldsymbol{\alpha}}$

Thank you for listening

