Al-Mustaqbal University

Department of Optics Techniques

Medical and optical physics 1

First stage

Assist. Lec. Hala Mohammed Subhi

Assist. Lec. Hala M. Subhi

Examples and tutorials

- Examples of mirrors and magnification formula

Example 1: An object with a height of $\mathbf{6 c m}$ is placed 24 cm from a convex mirror whose focal length is $\mathbf{8} \mathbf{~ c m}$. Find the distance and height of the image?

Solution:
$\mathrm{d}_{\mathrm{o}}=24 \mathrm{~cm}$
$\mathrm{f}=-8 \mathrm{~cm}$
$\mathrm{d}_{\mathrm{i}}=$?
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}} \rightarrow \frac{1}{-8}=\frac{1}{24}+\frac{1}{d_{i}}$
$\frac{1}{d_{i}}=\frac{1}{-8}-\frac{1}{24} \rightarrow \frac{1}{d_{i}}=\frac{-4}{24}$
$\frac{1}{d_{i}}=-\frac{1}{6} \rightarrow \therefore d_{i}=-6 \mathrm{~cm}$
$M=\frac{-d_{i}}{d_{o}}=-\frac{-6}{24}$
$M=\frac{1}{4}$
$\mathrm{M}=\frac{\mathrm{h}_{\mathrm{i}}}{\mathrm{h}_{\mathrm{o}}}$
$\frac{1}{4}=\frac{h_{i}}{6} \rightarrow \therefore h_{i}=1.5$

Example 2: An object is placed in front of a concave mirror whose focal length is 5 cm . Find the distance of the image if the object is located 25 cm away.
Solution:
$\mathrm{d}_{\mathrm{o}}=25 \mathrm{~cm}$
$\mathrm{f}=5 \mathrm{~cm}$
$\mathrm{d}_{\mathrm{i}}=$?
$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}} \rightarrow \frac{1}{5}=\frac{1}{d_{i}}+\frac{1}{25}$
$\frac{1}{d_{i}}=\frac{1}{5}-\frac{1}{25} \rightarrow \frac{1}{d_{i}}=\frac{5-1}{25}$
$\frac{1}{d_{i}}=\frac{4}{25} \rightarrow d_{i}=\frac{25}{4}$
$\therefore d_{i}=6.25 \mathrm{~cm}$

Example 3: What is the magnification if the object height is $\mathbf{6} \mathbf{~ c m}$ and the image height is 18 cm above the principal axis?

Solution:
As we know the magnification can be calculated using the following formula;
$\mathrm{M}=\frac{\mathrm{h}_{\mathrm{i}}}{\mathrm{h}_{\mathrm{o}}}$
Given, height of image $h_{i}=18 \mathrm{~cm}$, height of object $h_{0}=6 \mathrm{~cm}$
$M=\frac{h_{i}}{\mathrm{~h}_{\mathrm{o}}}=\frac{18}{6}$
$\mathrm{M}=+3$
The magnification is 3 .

Example 4: An object is placed in front of a convex mirror with a radius of $\mathbf{4 0}$ cm at a distance of $\mathbf{3 0} \mathrm{cm}$. Find the dimension of the image and magnification. Solution:

As we know from mirror formula,
$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}$
$f=\frac{R}{2} \rightarrow f=\frac{40}{2} \rightarrow \therefore f=20 \mathrm{~cm}$
$\frac{1}{-20}=\frac{1}{d_{i}}+\frac{1}{30}$
$\frac{1}{d_{i}}=\frac{1}{20}-\frac{1}{30}$
$\frac{1}{d_{i}}=\frac{3-2}{60} \rightarrow \frac{1}{d_{i}}=\frac{1}{60}$
$\therefore d_{i}=60 \mathrm{~cm}$
$\mathrm{M}=\frac{-\mathrm{d}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{o}}} \rightarrow \mathrm{M}=\frac{-60}{-30}$
$\therefore M=2$

Example 5 : An object is placed 30 cm in front of a concave mirror. If the image formed is virtual, erect, and three times the size of the object, calculate the focal length of the mirror.

Solution:

Object distance $\left(\mathrm{d}_{\mathrm{o}}\right)$ is $=-30 \mathrm{~cm}$ (since it's placed in front of the mirror).
The image formed is virtual, erect, and three times the size of the object.
Magnification (M) is $=3$

Assist. Lec. Hala M. Subhi

$\mathrm{M}=\frac{-\mathrm{d}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{o}}} \rightarrow 3=\frac{-d_{i}}{-30} \rightarrow d_{i}=3 \times 30=90 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}} \rightarrow \frac{1}{f}=\frac{1}{90}+\frac{1}{-30}$
$f=-45 \mathrm{~cm}$

Example 6: A convex mirror form a virtual image at a distance of $\mathbf{6 c m}$ of an object placed at a distance of 30 cm , find the focal length of the mirror and the radius of its curvature.

Solution:
$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}$
$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}} \rightarrow \frac{1}{f}=\frac{1}{6}+\frac{1}{-30}$
$\frac{1}{f}=\frac{4}{30} \rightarrow \therefore f=\frac{30}{4}$
$f=\frac{15}{2} \rightarrow \therefore f=7.5 \mathrm{~cm}$
$f=\frac{R}{2} \rightarrow R=2 f$
$R=2 \times 7.5=15 \mathrm{~cm}$

