

Department of Anesthesia Techniques

THE MICROSCOPE

M.S.C Faten kareem

M.S.C Zainab mohammed

INTRODUCTION

Instrument that produces enlarged images of small objects, allowing the observer an exceedingly close view of minute structures at a scale convenient for examination and analysis.

The magnifying power of a microscope is an expression of the number of times the object being examined appears to be enlarged and is a dimensionless ratio.

- Total magnification = Objective magnification X ocular magnification.
- It is usually expressed in the form $10 \times$.
- The resolution of a microscope is a measure of the smallest detail of the object that can be observed.
- Resolution is expressed in linear units, usually <u>micrometres</u> (μm).

Types of microscope

1. Optical Microscopes

- The most common type of microscope.
- These microscopes rely on lenses and light to illuminate a specimen for optimal image-gathering.
- They can be used for viewing living cells, insects, clinical blood and tissue assessment

2. Compound Microscopes

• A compound microscope uses a lens close to the object being viewed to collect light called the <u>objective</u> lens.

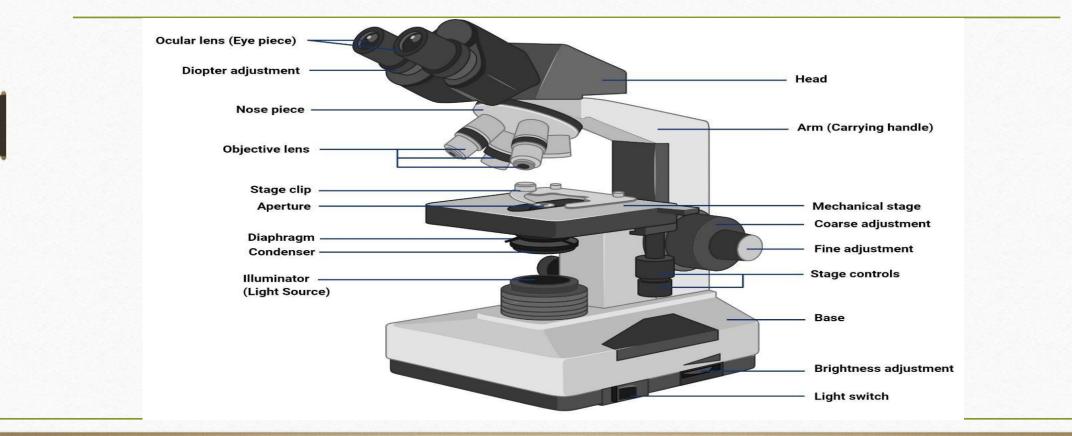
• They are most often used to view objects at a cellular level and can reach magnifications up to 1000x.

3. Electron Microscopes

This type of microscope sends accelerated electrons across or through a specimen to render a digital image.

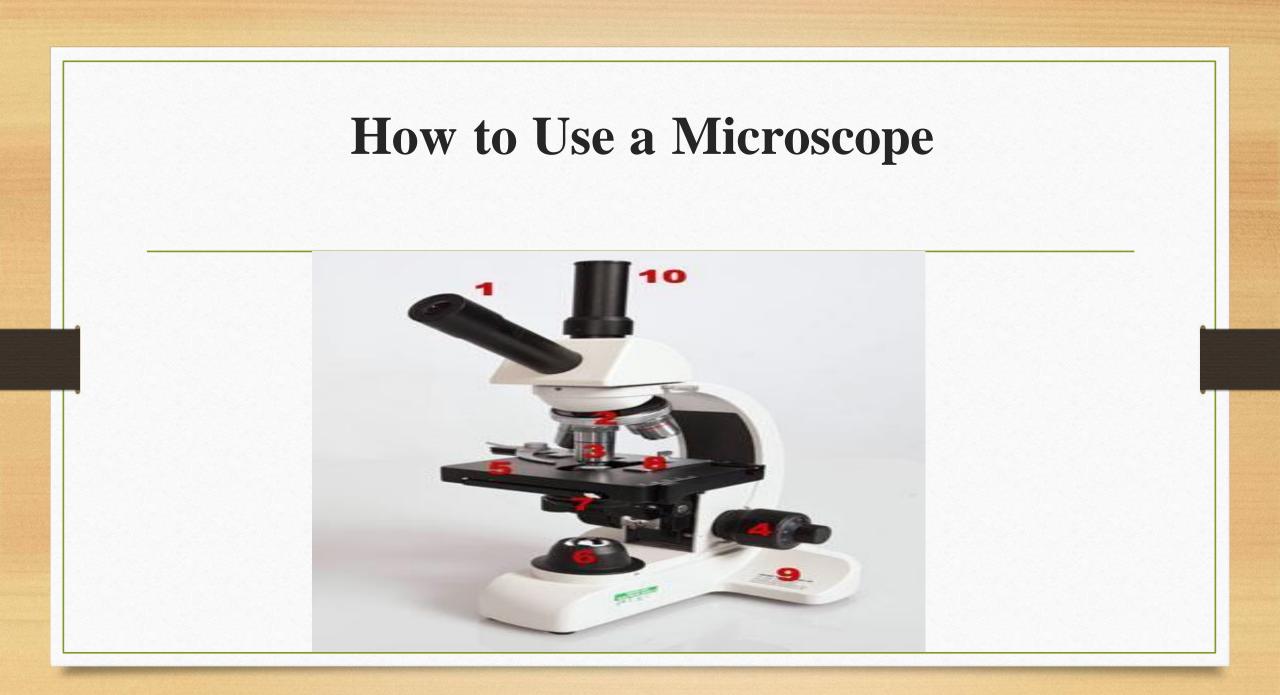
> Used to see detailed structure at the cellular and macromolecular levels.

4. Scanning Electron Microscopes (SEM)


- SEM microscopes scan the surface of a specimen in a rectangular pattern to provide information about topography and composition.
- SEM also has a variety of applications. Industries including microelectronics, semiconductors, medical devices and food processing, all use scanning electron microscopy as a way to examine the surface composition of components and products.

5. Transmission Electron Microscopes (TEM)

> TEM must pass electrons through a thin specimen to receive information.


This increased resolution allows us to study ultrastucture of organelles, viruses and macromolecules. Specially prepared materials samples may also be viewed in the TEM

Parts of the microscope

- Eyepiece Lens: the lens at the top that you look through. They are usually 10X or 15X power.
- **Tube**: Connects the eyepiece to the objective lenses
- Arm: Supports the tube and connects it to the base
- **Base**: The bottom of the microscope, used for support
- Illuminator: A steady light source used in place of a mirror.
- **Stage:** The flat platform where you place your slides. Stage clips hold the slides in place. If your microscope has a mechanical stage, you will be able to move the slide around by turning two knobs. One moves it left and right, the other moves it up and down.

- **Revolving Nosepiece or Turret**: This is the part that holds two or more objective lenses and can be rotated to easily change power.
- **Objective Lenses**: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a 10X (most common) eyepiece lens, we get total magnifications of 40X (4X times 10X), 100X , 400X and 1000X. To have good resolution at 1000X, you will need a relatively sophisticated microscope with an Abbe condenser.
- **Condenser Lens**: The purpose of the condenser lens is to focus the light onto the specimen. Condenser lenses are most useful at the highest powers (400X and above).

