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4 Digital Filtering
In this chapter, we’ll study digital filtering methods. Specifically, we’ll look into the following:

• Filter specifications
• Filtering in frequency domain
• Filtering in time domain
• Simple filter design – Sum and difference (SD) filters
• Finite Impulse Response (FIR) filters
• Infinite Impulse Response (IIR) filters (using MATLAB functions)

4.1 Filter Specifications 

Filtering is the process of keeping components of the signal with certain desired frequencies and removing 
components of the signal with certain undesired frequencies. Very often, we keep the gain of the required 
frequency components to 1 or close to 1 and the gain of the undesired frequency components will be 0 
or close to 0. In general, there are 4 types of filter: low-pass filter (LPF), high-pass-filter (HPF), band-
pass filter (BPF) and band-stop filter (BSF). Each filter will have specific characteristics:

• Passband – the range of frequency components that are allowed to pass 
• Stopband – the range of frequency components that are suppressed 
• Passband ripple – ripples in the passband, the maximum amount by which attenuation in 

the passband may deviate from gain (which is normally 1)
• Stopband ripple – ripples in the stopband, the maximum amount by which attenuation in 

the stopband may deviate from gain (which is normally 0)
• Stopband attenuation – the minimum amount by which frequency components in the 

stopband are attenuated 
• Transition band – the band between the passband and the stopband. 

Magnitude frequency responses of ideal filters are shown in Figure 1 where fc is the cut-off frequency 
with Fs as the sampling frequency.

Filtering is the process of keeping components of the signal with certain desired frequencies and removing
components of the signal with certain undesired frequencies. the gain of the required
frequency components to 1  and the gain of the undesired frequency components will be 0

4 types of filter: 
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fc is the cut-off frequency c
Fs as the sampling frequency.
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Figure 4.1: Ideal magnitude frequency responses (a) LPF (b) HPF (c) BPF (d) BSF.
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Figure 4.1: Ideal magnitude frequency responses (a) LPF (b) HPF (c) BPF (d) BSF.
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4.1.1 Low-pass filter

A LPF passes all low-frequency components below the cut-off frequency, fc and blocks all higher frequency 
components above fc. Figure 4.2 shows the magnitude frequency response of a LPF in reality, where we 
can’t design ‘square’ type of filters as shown in Figure 4.1. So, there needs to be transition band between 
the passband and stopband. The edge frequencies are the end frequencies of passband (fp) or stopband 
(fs). So, a practical LPF will allow frequency components below fp and remove components higher than fs.
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Figure 4.2: Magnitude frequency response of a LPF.

For example, consider a combination of three sinusoidal signals: 2 Hz, 5 Hz and 11 Hz as shown in 
Figure 4.3.

Figure 4.3: A combination of three sinusoidal signals.

The final output signals after LPF at fp=3 Hz with fs=4 Hz and fp=8 Hz with fs=9 Hz are shown in 
Figure 4.4.

Low-pass filter

A LPF passes all low-frequency components below the cut-off frequency, fc  and blocks all higher frequency c
components above fc. 

. So, a practical LPF will allow frequency components below fp and remove components higher than fs.

For example, consider a combination of three sinusoidal signals: 2 Hz, 5 Hz and 11 Hz as shown in 
Figure 4.3.

The final output signals after LPF at fp=3 Hz with fs=4 Hz and fp=8 Hz with fs=9 Hz are shown in
Figure 4.4.
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Figure 4.4: LPF of the three sinusoidal signals.

4.1.2 High-pass filter

HPF passes all high-frequency components above the cut-off frequency, fc and blocks all lower frequency 
components below fc. The magnitude frequency response of a HPF in reality is shown in Figure 4.5 where 
it allows frequency components higher than fp and remove components below fs.
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Figure 4.5: Magnitude frequency response of a HPF.

Consider the same combination of three sinusoidal signals: 2 Hz, 5 Hz and 11 Hz as previously. The final 
output signals after HPF at fs=3 Hz with fp=4 Hz and fs=8 Hz with fp=9 Hz are shown in Figure 4.6.

4.1.2 High-pass filter

HPF passes all high-frequency components above the cut-off frequency, fc and blocks all lower frequency c
components below fc. Th
it allows frequency components higher than fp and remove components below fs.

Consider the same combination of three sinusoidal signals: 2 Hz, 5 Hz and 11 Hz as previously. The final 
output signals after HPF at fs=3 Hz with f



Biological Signal Analysis

58

Digital Filtering

Figure 4.6: HPF of the three sinusoidal signals.

4.1.3 Band-pass and band-stop filters

BPF passes all frequency components between edge passband frequencies, fp1<freq(allow)<fp2 and blocks 
all frequencies below and above edge stopband frequencies, freq(block)<fs1; freq(block)>fs2. A BPF can be 
designed using a LPF and HPF. BSF passes all frequency components lower and higher than edge 
passband frequencies, freq(allow)<fp1; freq(allow)>fp2 and blocks all frequencies between fs1<freq(block)<fs2. The 
magnitude frequency responses of a BPF and a BSF are shown in Figures 4.7 and 4.8. 
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Band-pass and band-stop filters

A BPF can be
designed using a LPF and HPF. BSF passes all frequency components lower and higher than edge 
passband frequencies, freqq allow)<f<fp< ;; freqq allow)>f>fp> and blocks all frequencies between fs <freqq block)<f<fs< . Thq(a p1; q(a p2 s1< q(b s2.
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Figure 4.7: Magnitude frequency response of a BPF.
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Figure 4.8: Magnitude frequency response of a BSF.

Figure 4.9 shows the output signals after applying BPF at fp1=4 Hz, fp2=6 Hz, fs1=3 Hz, fs2=7 Hz and BSF 
at fp1=4 Hz, fp2=6 Hz, fs1=3 Hz, fs2=7 Hz for the combination of the sinusoidal signals. 
Figure 4.9 shows the output signals after applying BPF at fp =4 Hz, fp =6 Hz, fs =3 Hz, fs =7 Hz and BSFp1= p2= s1= s2=
at fp =4 Hz, fp =6 Hz, fs =3 Hz, fs =7 Hz for the combination of the sinusoidal signals. p1= p2= s1= s2=
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(a)
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Figure 4.9: (a) BPF (b) BSF of the three sinusoidal signals.

4.2 Direct filtering in frequency domain

Filtering can be done directly in the frequency domain using the following steps:

• Obtain the Discrete Fourier Transform (DFT) of the signal (from 0 to Fs);
• Set to zero the values that are not in the required frequency range i.e. apply a rectangular 

window;
• Compute the Inverse Discrete Fourier Transform (IDFT).

For example, let use generate a combination of two sinusoidal signal with f1=8 Hz and f 2=25 Hz with 
N=100, Fs=200 Hz (shown in Figure 4.10) and say, we wish to design a LPF with fp=10 Hz and fs=12 Hz. 
Compute y=fft(x) in MATLAB and apply the rectangular window, i.e. set the values y(7:95)=0. As 
MATLAB indexing starts from 1, y(1:6) represents DFT values from 0 to 10 Hz16, which represents the 
passband range, the stopband range from 12 Hz to 100 Hz is represented by y(7:51). Due to symmetry, 
we also need to create mirror images of the passband and stopband resulting in the rectangular window 
as shown in Figure 4.11 (a).

Figure 4.10: Combination of two sinusoidal signals (f1=8 Hz and f2=25 Hz).

Direct filtering in frequency domain

Obtain the Discrete Fourier Transform (DFT) of the signal (from 0 to Fs);
• Set to zero the values that are not in the required frequency range i.e. apply a rectangular 

window;
• Compute the Inverse Discrete Fourier Transform (IDFT).

For example, l f1=8 Hz andff f 2=25 Hz with ff
N=100,NN Fs=200 Hz (
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Figure 4.11: Direct LPF (a) rectangular window with fp=10 Hz and fs=12 Hz (b) filtered output.

Next, compute yf=ifft(y,'symmetric') and the low pass filtered signal is obtained as shown 
in Figure 4.11 (b). In MATLAB, it is useful to force conjugate symmetry, else complex values could be 
obtained due round-off errors in the fft and ifft operations. Figure 4.12 shows the whole procedure 
for the discussed example. This direct filtering method is simplistic to understand but has the disadvantage 
of high computation cost and requires chunks of data (i.e. real-time filtering is not possible). Thus we 
normally use finite impulse response (FIR) or infinite impulse response (IIR) filters to perform filtering.
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Figure 4.12: LPF example using direct filtering method.

4.3 Time domain filtering

To solve the problems of direct filtering, we could filter in time domain and there are several time domain 
filtering methods. We will look at design of simple FIR filters and IIR filters using MATLAB. The output 
from an IIR digital filter is made up of previous inputs and previous outputs:
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where B and A are the filter coefficients. The output from a FIR digital filter is made up of previous 
inputs only, so there is no feedback:
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Figure 4.13 shows an example comparing direct filtering in the frequency domain with time domain 
filtering. It should be obvious from this figure that filtering in time domain is computationally less 
complicated. 

4.3 Time domain filtering

. The output 
from an IIR digital filter is made up of previous inputs and previous outputs:

where B and A are the filter coefficients. The output from a FIR digital filter is made up of previous
inputs only, so there is no feedback:

y[n][ B[k][ x[] n[n k] .
M

k 1

It should be obvious from this figure that filtering in time domain is computationally less
complicated.


