Al-Mustaqbal University

Department of Biomedical Engineering

Third Stage / $2^{\text {nd }}$ Course
"Thermodynamics"
Assist. Lec. Samara Bashar Saeed

Lec.3: PROPERTIES OF PURE SUBSTANCES

By

Assist. Lec. Samara Bashar

PURE SUBSTANCE

- Pure substance: A substance that has a fixed chemical composition throughout.
Air is a mixture of several gases, but it is considered to be a pure substance.

Nitrogen and gaseous air are pure substances.

(a) $\mathrm{H}_{2} \mathrm{O}$

(b) AIR

A mixture of liquid and gaseous water is a pure substance, but a mixture of liquid and gaseous air is not.

Phases of Pure Substance

Solid

Gaseous

Liquid

Phase-change Processes of Pure Sub

- Consider a piston-cylinder device containing liquid water at $20^{\circ} \mathrm{C}$ and 1 atm pressure.
Under these conditions, water exists in the liquid phase, and it is called a compressed liquid, or a subcooled liquid, meaning that it is not about to vaporize.

STATE 1
$P=1 \mathrm{~atm}$
$T=20^{\circ} \mathrm{C}$

Heat

STATE 2

- As more heat is transferred, the temperature keeps rising until it reaches $100^{\circ} \mathrm{C}$.
- At this point water is still a liquid, but any heat addition will cause some of the liquid to vaporize.
- A liquid that is about to vaporize is called a saturated liquid.

Saturated liquidvapor mixture:
The state at which the liquid and vapor phases coexist in equilibrium.

Heat

As more heat is transferred, part of the saturated liquid vaporizes (saturated liquid-vapor mixture).

Saturated vapor: A vapor that is about to condense.

Heat
At 1 atm pressure, the temperature remains constant at $100^{\circ} \mathrm{C}$ until the last drop of liquid is vaporized (saturated vapor).

Superheated

vapor: A vapor that is not about to condense

STATE 5
$P=1 \mathrm{~atm}$
$T=300^{\circ} \mathrm{C}$

As more heat is transferred, the temperature of the vapor starts to rise (superheated vapor).

Saturation Temperature and Saturation

- The temperature at which water starts boiling depends on the pressure; therefore, if the pressure is fixed, so is the boiling temperature.
- Water boils at $100^{\circ} \mathrm{C}$ at 1 atm pressure.
- Saturation temperature $T_{\text {sat }}:$ The temperature at which a pure substance changes phase at a given pressure.
- Saturation pressure $P_{\text {sat }}$: The pressure at which a pure substance changes phase at a given temperature.

The liquid-	-10	0.26
vapor	-5	0.40
saturation	0	0.61
curve of a	5	0.87
pure	10	1.23
substance	20	1.71
(numerical	25	2.34
values are for	40	3.17
water).	50	4.25
	100	7.39
	200	12.35
	250	476.4
	300	3955

- Latent heat: The amount of energy absorbed or released during a phase-change process.
- Latent heat of fusion: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing.
- Latent heat of vaporization: The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation.
- The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs.
- At 1 atm pressure, the latent heat of fusion of water is $333.7 \mathrm{~kJ} / \mathrm{kg}$ and the latent heat of vaporization is $2256.5 \mathrm{~kJ} / \mathrm{kg}$.
- The atmospheric pressure, and thus the boiling temperature of water, decreases with elevation.

TABLE 3-2

Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude

Elevation, m	Atmospheric pressure, kPa	Boiling tempera- ture, ${ }^{\circ} \mathrm{C}$
0	101.33	100.0
1,000	89.55	96.5
2,000	79.50	93.3
5,000	54.05	83.3
10,000	26.50	66.3
20,000	5.53	34.7

- Now we repeat the previous process at different pressures to develop the $T-v$ diagram..

Fig. (1) T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures (numerical values are for water).

First, water starts boiling at a much higher temperature (e.g. $179.9^{\circ} \mathrm{C}$ at 1 MPa) at this pressure. Second, the specific volume of the saturated liquid is larger and the specific volume of the saturated vapor is smaller than the corresponding values at 1 atm pressure.

Critical point is defined as the point at which the saturated liquid and saturated vapor states are identical.

- The temperature, pressure, and specific volume of a substance at the critical point are called, respectively, the critical temperature $T_{\text {cr }}$ critical pressure P_{cr} and critical specific volume v_{cr}
- At pressures above the critical pressure, there is not a distinct phase change process.
- Above the critical state, there is no line that separates the compressed liquid region and the superheated vapor region.
- However, it is customary to refer to the substance as superheated vapor at temperatures above the critical temperature and as compressed liquid at temperatures below the critical temperature.

The saturated liquid states in Fig.(1) can be connected by a line called the saturated liquid line, and saturated vapor states in the same figure can be connected by another line, called the saturated vapor line. These two lines meet at the critical point, forming a dome as shown in the following Fig.

- saturated liquid line
- saturated vapor line
- compressed liquid region
- superheated vapor region
saturated liquid-vapor mixture region (wet region)

P- vdiagram of a pure substance.

The pressure in a piston-cylinder device can ${ }_{11}$ be reduced by reducing the weight of the piston.

Extending the Diagrams to Include th

At triple-point pressure and temperature, a substance exists in three phases in equilibrium.

Sublimation: Passing from the solid phase directly into the vapor phase.

Equation of State

Any equation relates the $\mathrm{P}, \mathrm{T}, v$ of substance. The simplest and best known is the ideal- gas equation of state. Its predict the $\mathrm{P}-\mathrm{V}-\mathrm{T}$ behavior of a gas.

Ideal Gas Law

Combination of Boyle's and Charles' laws for gases at low P result in the equation of state for the ideal gas as

$$
P=R\left(\frac{T}{v}\right) \quad \text { or } \quad P v=R T
$$

where R is gas constant and takes on a different value for each gas
$R=\frac{R_{u}}{M}$ where $\boldsymbol{R}_{\boldsymbol{u}}$ is the universal gas constant and \boldsymbol{M} is molar mass (also called molecular weight).

$P=$ absolute pressure

$v=$ specific volume
$T=$ absolute temperature in K

The molar mass, M : mass of one mole of a substance in grams or the mass of one kmol

$$
M_{\text {air }}=28.97 \frac{\mathrm{~g}}{\mathrm{gmol}}=28.97 \frac{\mathrm{~kg}}{\mathrm{kmol}}=28.97 \frac{\mathrm{lbm}}{\mathrm{lbmol}}
$$

The ideal gas equation of state may be written in several ways
$P V=m R T$
$P V=\frac{m}{M}(M R) T$
$P V=N R_{u} T$
$P \frac{V}{N}=R_{u} T$
$P \bar{v}=R_{u} T$

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{R T_{1}}=\frac{P_{2} V_{2}}{R T_{2}} \\
& \therefore \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
\end{aligned}
$$

Compressibility Factor-a Measure of Deviation Ideal-gas Behavior

Compressibility factor \boldsymbol{Z} : A factor that accounts for the deviation of real gases from ideal-gas behavior at a given temperature and pressure.

$$
\begin{aligned}
& P V=Z R T \\
& Z=\frac{P V}{R T} \\
& Z=\frac{V_{\text {actual }}}{V_{\text {ideal }}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { REAL } \\
& \text { GASES } \\
& \text { Z\{解 } \begin{array}{l}
1 \\
=1 \\
<1
\end{array}
\end{aligned}
$$

Gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).
Question: What is the criteria for low pressure and high temperature? Answer: The pressure or temperature of a gas is high or low relative to its critical temperature or pressure.

At very low pressures, all gases approach ideal-gas behavior (reqardless of their temperature).

Z: a function of the reduced pressure and the reduced temperature. The Z factor is approximately the same for all gases at the same reduced temperature and reduced pressure, which are defined as

$$
T_{R}=\frac{T}{T_{c r}} \quad \text { and } \quad P_{R}=\frac{P}{P_{c r}}
$$

where $P_{R}=$ reduced pressure
$\mathrm{T}_{\mathrm{R}}=$ reduced temperature

The critical constant data for various substances are given in Table A-1.
When either P or T is unknown, Z can be determined from the compressibility chart with the help of the pseudo-reduced specific volume, defined as

$$
\nu_{R}=\frac{\nu_{\text {actual }}}{R T_{c r} / P_{c r}}
$$

Figure A-15 (book) presents the generalized compressibility chart based on data for a large number of gases.

OTHER EQUATIONS OF

 STATESeveral equations have been proposed to represent the $P-V$ Tbehavior of substances accurately over a larger region with no limitations.

Van der Waals Equation of State

$$
\begin{aligned}
& \left(P+\frac{a}{V^{2}}\right)(v-b)=R T \\
& a=\frac{27 R^{2} T_{\mathrm{cr}}^{2}}{64 P_{\mathrm{cr}}} \quad b=\frac{R T_{\mathrm{cr}}}{8 P_{\mathrm{cr}}}
\end{aligned}
$$ $\left(\frac{\partial P}{\partial V}\right)_{T=T_{\mathrm{cr}}=\text { const }}=0$

Critical isotherm substance has an inflection point at the critical state.
van der Waals
Berthelet
Redlich-Kwang
Beattie-Bridgeman
Benedict-Webb-Rubin
Strobridge
Virial of a pure

This model includes two effects not considered in the ideal-gas model: the intermolecular attraction forces and the volume occupied by the molecules themselves. The accuracy of the van der Waals equation of state is often inadequate.

Beattie-Bridgeman Equation of State

$$
P=\frac{R_{u} T}{\bar{v}^{2}}\left(1-\frac{c}{\bar{v} T^{3}}\right)(\bar{v}+B)-\frac{A}{\bar{v}^{2}}
$$

The constants are given in Table 3-4 for various

$$
A=A_{0}\left(1-\frac{a}{\bar{V}}\right) B=B_{0}\left(1-\frac{b}{\bar{V}}\right)
$$ substances. It is known to be reasonably accurate for densities up to about $0.8 \rho_{\text {cr }}$

Benedict-Webb-Rubin Equation of State

$P=\frac{R_{u} T}{\bar{v}}+\left(B_{0} R_{u} T-A_{0}-\frac{C_{0}}{T^{2}}\right) \frac{1}{\bar{v}^{2}}+\frac{b R_{u} T-a}{\bar{v}^{3}}+\frac{a \alpha}{\bar{v}^{6}}+\frac{c}{\bar{v}^{3} T^{2}}\left(1+\frac{\gamma}{\bar{v}^{2}}\right) e^{-\gamma \gamma 0^{2}}$
The constants are given in Table 3-4. This equation can handle substances at densities up to about $2.5 \rho_{\text {cr }}$

Virial Equation of State

$P=\frac{R T}{v}+\frac{a(T)}{v^{2}}+\frac{b(T)}{v^{3}}+\frac{c(T)}{v^{4}}+\frac{d(T)}{v^{5}}+\ldots$
The coefficients $a(T), b(T), c(T)$, and so on, that are functions of temperature alone are called virial coefficients.

Example (1)

Determine the mass of the air in a room whose dimensions are 4 m $\times 5 \mathrm{~m} \times 6 \mathrm{~m}$ at 100 kPa and $25^{\circ} \mathrm{C}$.

Example (2)
Determine the specific volume of refrigerant-134a at 1 MPa and $50^{\circ} \mathrm{C}$, using (a) the ideal-gas equation of state and (b) the generalized compressibility chart. Compare the values obtained to the actual value of $0.021796 \mathrm{~m} 3 / \mathrm{kg}$ and determine the error involved in each case.

Example (3)
Determine the pressure of water vapor at $350^{\circ} \mathrm{C}$ and 0.035262 $\mathrm{m} 3 / \mathrm{kg}$, using (a) the steam tables, (b) the ideal-gas equation, and (c) the generalized compressibility chart.

