
1

Logic Gate

Prepared by
Dr. Samir Badrawi

Level 1 , Semester 1
@ Department of prosthetic and orthotic Engineering

Arithmetic Operations & Boolean Algebra -2

College of
Engineering & Technology Al‐Mustaqbal

University

The majority of this course material is based on text and presentations of :
Floyd, Digital Fundamentals, 10Th ed., © 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved

2

In Boolean algebra, a variable is a symbol used to represent
an action, a condition, or data. A single variable can only
have a value of 1 or 0.

Boolean Addition

The complement represents the inverse of a variable and is indicated
with an overbar. Thus, the complement of A is A.

A literal is a variable or its complement.

Addition is equivalent to the OR operation. The sum term is 1 if one or
more if the literals are 1. The sum term is zero only if each literal is 0.

Determine the values of A, B, and C that make the sum term
of the expression A + B + C = 0?

Each literal must = 0; therefore A = 1, B = 0 and C = 1.

3

In Boolean algebra, multiplication is equivalent to the AND
operation. The product of literals forms a product term. The
product term will be 1 only if all of the literals are 1.

Boolean Multiplication

What are the values of the A, B and C if the
product term of A.B.C = 1?
Each literal must = 1; therefore A = 1, B = 0 and C = 0.

4

Commutative Laws

In terms of the result, the order in which variables are
ORed makes no difference.

The commutative laws are applied to addition and
multiplication. For addition, the commutative law states

A + B = B + A

In terms of the result, the order in which variables are
ANDed makes no difference.

For multiplication, the commutative law states

AB = BA

5

Associative Laws

When ORing more than two variables, the result is
the same regardless of the grouping of the variables.

The associative laws are also applied to addition and
multiplication. For addition, the associative law states

A + (B +C) = (A + B) + C

For multiplication, the associative law states
When ANDing more than two variables, the result is
the same regardless of the grouping of the variables.

A(BC) = (AB)C

6

Distributive Law

The distributive law is the factoring law. A common variable can
be factored from an expression just as in ordinary algebra. That is

AB + AC = A(B+ C)

The distributive law can be illustrated with equivalent circuits:

B + C
C

A
X

B
ABB

X

A

C
A

AC

AB + ACA(B+ C)

7

Rules of Boolean Algebra

1. A + 0 = A

2. A + 1 = 1

3. A . 0 = 0

4. A . 1 = A

5. A + A = A

7. A . A = A

6. A + A = 1

8. A . A = 0

9. A = A
=

10. A + AB = A

12. (A + B)(A + C) = A + BC

11. A + AB = A + B

8

Rules of Boolean Algebra

Rules of Boolean algebra can be illustrated with Venn
diagrams. The variable A is shown as an area.
The rule A + AB = A can be illustrated easily with a diagram. Add an
overlapping area to represent the variable B.

A B
AB

The overlap region between A and B represents AB.

AAAA BA B
AB

A B
AB

The diagram visually shows that A + AB = A. Other rules can be illustrated
with the diagrams as well.

=

Rules of Boolean Algebra

A + AB = A + BIllustrate the rule
with a Venn diagram.

10

Rules of Boolean Algebra

Rule 12, which states that (A + B)(A + C) = A + BC, can be proven
by applying earlier rules as follows:

(A + B)(A + C) = AA + AC + AB + BC
= A + AC + AB + BC
= A(1 + C + B) + BC
= A . 1 + BC
= A + BC

This rule is a little more complicated, but it can also be shown with
a Venn diagram, as given on the following slide…

11

A B

C

A
A + B

The area representing A + B is shown in yellow.

The area representing A + C is shown in red.

Three areas represent the variables A, B, and C.

A

C
A + C

The overlap of red and yellow is shown in orange.

A B

C

A B

C
BC

ORing with A gives the same area as before.

A B

C
BC=

A B

C
(A + B)(A + C) A + BC

The overlapping area between B and C represents BC.

12

DeMorgan’s Theorem

The complement of a product of variables is equal to
the sum of the complemented variables.

DeMorgan’s 1st Theorem

AB = A + B

Applying DeMorgan’s first theorem to gates:

OutputInputs
A B AB A + B
0
0
1
1

0
1
0
1

1
1
1
0

1
1
1
0

A + B
A
B

AB
A
B

NAND Negative-OR

13

DeMorgan’s Theorem

DeMorgan’s 2nd Theorem

The complement of a sum of variables is equal to the
product of the complemented variables.

A + B = A . B

Applying DeMorgan’s second theorem to gates:

A B A + B AB
OutputInputs

0
0
1
1

0
1
0
1

1
0
0
0

1
0
0
0

AB
A
B

A + B
A
B

NOR Negative-AND

14

Apply DeMorgan’s theorem to remove the overbar
covering both terms from the

expression X = C + D.

DeMorgan’s Theorem

To apply DeMorgan’s theorem to the expression,
you can break the overbar covering both terms and
change the sign between the terms.
This results in

X = C . D. Deleting the double bar gives X = C . D.=

15

A

C
D

B

Boolean Analysis of Logic Circuits

Combinational logic circuits can be analyzed by writing the
expression for each gate and combining the expressions according
to the rules for Boolean algebra.

Apply Boolean algebra to derive the expression for X.

Write the expression for each gate:

Applying DeMorgan’s theorem and the distribution law:

C (A + B)

= C (A + B)+ D

(A + B)

X = C (A B) + D = A B C + D

X

16

SOP and POS forms

Boolean expressions can be written in the sum-of-products
form (SOP) or in the product-of-sums form (POS). These
forms can simplify the implementation of combinational
logic, particularly with PLDs. In both forms, an overbar
cannot extend over more than one variable.

An expression is in SOP form when two or more product
terms are summed as in the following examples:

An expression is in POS form when two or more sum
terms are multiplied as in the following examples:

A B C + A B A B C + C D C D + E

17

SOP Standard form

In SOP standard form, every variable in the domain must
appear in each term. This form is useful for constructing
truth tables or for implementing logic in PLDs.
You can expand a nonstandard term to standard form by multiplying the
term by a term consisting of the sum of the missing variable and its
complement.

Convert X = A B + A B C to standard form.

The first term does not include the variable C. Therefore,
multiply it by the (C + C), which = 1:
X = A B (C + C) + A B C

= A B C + A B C + A B C

18

POS Standard form

In POS standard form, every variable in the domain must
appear in each sum term of the expression.
You can expand a nonstandard POS expression to standard form by
adding the product of the missing variable and its complement and
applying rule 12, which states that (A + B)(A + C) = A + BC.

Convert X = (A + B)(A + B + C) to standard form.

The first sum term does not include the variable C.
Therefore, add C C and expand the result by rule 12.
X = (A + B + C C)(A + B + C)

= (A +B + C)(A + B + C)(A + B + C)

19

Binary representation of SOP and POS forms

SOP standard form

POS standard form

111110101 DCBA

000001010  DCBA

Converting standard SOP to POS

SOP standard form

The equivalent POS standard form contains the other
three remaining terms

111101011010000 
 ABCCBABCACBACBA

110100,001 and

))()((CBACBACBA 

20

Converting SOP to truth table

1. First list all possible combinations of binary values of the
variables in the expression.

2. Convert the SOP to standard form if it is not already.

3. Place a 1 in the output column for each binary value that makes
the standard SOP expression a 1 and place a 0 for all the
remaining binary values

21

Example: Develop a Truth Table for the standard SOP Expression :‐

ABCCBACBA 
Solution :Three variables, then 8 possible combinations.
For each product term in the Expression, place (1) in o/p, and place (0)
in for the other terms in o/p

22

•Array of cells, each cell represents one possible product term

•It is a tool for simplifying combinational logic with 3 or 4 variables.

• For 3 variables, 8 cells are required (23).

•Each cell is adjacent to cells that are immediately next to it on any of
its four sides.

•A cell is not adjacent to the cells that diagonally touch any of its
corners.

• “wrap-around” adjacency means the top row is adjacent to the
bottom row and left column to right column.

Karnaugh maps

23

Grouping the 1s

•A group must contain either 1, 2, 4, 8, or 16 cells.

•Each cell in a group must be adjacent to one or more cells in that
same group.

•Include the largest possible # of 1s in a group in accordance with
rule 1

•Each 1 on the map must be included in at least one group.

The goal is to maximize the size of the groups and to minimize the
number of the groups

24

1. Group the 1’s into two overlapping
groups as indicated.

2. Read each group by eliminating any
variable that changes across a
boundary.

3. The vertical group is read AC.

K-maps can simplify combinational logic by grouping
cells and eliminating variables that change.

Karnaugh maps

1

1 1

AB
C

00

01

11

10

0 1

1

1 1

AB
C

00

01

11

10

0 1

Group the 1’s on the map and read the minimum logic.

B changes
across this
boundary

C changes
across this
boundary

4. The horizontal group is read AB.

X = AC +AB

25

A 4-variable map has an adjacent cell on each of its four
boundaries as shown.

AB

AB

AB

AB

CD CD CD CD
Each cell is different only by one
variable from an adjacent cell.
Grouping follows the rules given
in the text.
The following slide shows an
example of reading a four
variable map using binary
numbers for the variables…

Karnaugh maps

26

X

Karnaugh maps
Group the 1’s on the map and read the minimum logic.

1. Group the 1’s into two separate
groups as indicated.

2. Read each group by eliminating
any variable that changes across a
boundary.

3. The upper (yellow) group is read as
AD.

4. The lower (green) group is read as
AD.

AB
CD

00

01

11

10

00 01 11 10

1 1

1 1

1

1

1

1

AB
CD

00

01

11

10

00 01 11 10

1 1

1 1

1

1

1

1

X = AD +AD

B changes

C changes

B changes

C changes across
outer boundary

27

28

