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In Boolean algebra, a variable is a symbol used to represent 
an action, a condition, or data. A single variable can only 
have a value of 1 or 0.  

Boolean Addition

The complement represents the inverse of a variable and is indicated 
with an overbar. Thus, the complement of A is A.

A literal is a variable or its complement.

Addition is equivalent to the OR operation. The sum term is 1 if one or 
more if the literals are 1. The sum term is zero only if each literal is 0.

Determine the values of A, B, and C that make the sum term 
of the expression A + B + C = 0?

Each literal must = 0; therefore A = 1, B = 0 and C = 1.
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In Boolean algebra, multiplication is equivalent to the AND 
operation. The product of literals forms a product term. The 
product term will be 1 only if all of the literals are 1.

Boolean Multiplication

What are the values of the A, B and C if the 
product term of A.B.C = 1?
Each literal must = 1; therefore A = 1, B = 0 and C = 0.
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Commutative Laws

In terms of the result, the order in which variables are 
ORed makes no difference.

The commutative laws are applied to addition and 
multiplication. For addition, the commutative law states

A + B = B + A

In terms of the result, the order in which variables are 
ANDed makes no difference.

For multiplication, the commutative law states

AB = BA
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Associative Laws

When ORing more than two variables, the result is 
the same regardless of the grouping of the variables.

The associative laws are also applied to addition and 
multiplication. For addition, the associative law states

A + (B +C) = (A + B) + C

For multiplication, the associative law states
When ANDing more than two variables, the result is 
the same regardless of the grouping of the variables.

A(BC) = (AB)C
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Distributive Law

The distributive law is the factoring law. A common variable can 
be factored from an expression just as in ordinary algebra. That is

AB + AC = A(B+ C)

The distributive law can be illustrated with equivalent circuits:

B + C
C

A
X

B
ABB

X

A

C
A

AC

AB + ACA(B+ C)
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Rules of Boolean Algebra

1.  A + 0 = A

2.  A + 1 = 1

3.  A . 0 = 0

4.  A . 1 = A

5.  A + A = A

7.  A . A = A

6.  A + A = 1

8.  A . A = 0

9.  A = A
=

10. A + AB = A

12. (A + B)(A + C) = A + BC

11. A + AB = A + B
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Rules of Boolean Algebra

Rules of Boolean algebra can be illustrated with Venn
diagrams. The variable A is shown as an area.
The rule A + AB = A can be illustrated easily with a diagram. Add an 
overlapping area to represent the variable B.

A B
AB

The overlap region between A and B represents AB. 

AAAA BA B
AB

A B
AB

The diagram visually shows that A + AB = A. Other rules can be illustrated 
with the diagrams as well.

=



Rules of Boolean Algebra

A + AB = A + BIllustrate the rule                                
with a Venn diagram.
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Rules of Boolean Algebra

Rule 12, which states that (A + B)(A + C) = A + BC, can be proven 
by applying earlier rules as follows:

(A + B)(A + C) = AA + AC + AB + BC
= A + AC + AB + BC
= A(1 + C + B) + BC
= A . 1 + BC
= A + BC

This rule is a little more complicated, but it can also be  shown with 
a Venn diagram, as given on the following slide…
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A B

C

A
A + B

The area representing A + B is shown in yellow.

The area representing A + C is shown in red.

Three areas represent the variables A, B, and C.

A

C
A + C

The overlap of red and yellow is shown in orange.

A B

C

A B

C
BC

ORing with A gives the same area as before.

A B

C
BC=

A B

C
(A + B)(A + C) A + BC

The overlapping area between B and C represents BC.
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DeMorgan’s Theorem

The complement of a product of variables is equal to 
the sum of the complemented variables.

DeMorgan’s 1st Theorem

AB = A + B

Applying DeMorgan’s first theorem to gates:

OutputInputs
A B AB A + B
0
0
1
1

0
1
0
1

1
1
1
0

1
1
1
0

A + B
A
B

AB
A
B

NAND Negative-OR
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DeMorgan’s Theorem

DeMorgan’s 2nd Theorem

The complement of a sum of variables is equal to the 
product of the complemented variables.

A + B = A . B

Applying DeMorgan’s second theorem to gates:

A B A + B AB
OutputInputs

0
0
1
1

0
1
0
1

1
0
0
0

1
0
0
0

AB
A
B

A + B
A
B

NOR Negative-AND
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Apply DeMorgan’s theorem to remove the overbar 
covering both terms from the 

expression X = C + D.

DeMorgan’s Theorem

To apply DeMorgan’s theorem to the expression, 
you can break the overbar covering both terms and 
change the sign between the terms. 
This results in

X = C . D. Deleting the double bar gives X = C . D.=
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A

C
D

B

Boolean Analysis of Logic Circuits

Combinational logic circuits can be analyzed by writing the 
expression for each gate and combining the expressions according 
to the rules for Boolean algebra.

Apply Boolean algebra to derive the expression for X.

Write the expression for each gate:

Applying DeMorgan’s theorem and the distribution law:

C (A + B )

= C (A + B )+ D

(A + B )

X = C (A  B) + D = A B C + D

X
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SOP and POS forms

Boolean expressions can be written in the sum-of-products
form (SOP) or in the product-of-sums form (POS). These 
forms can simplify the implementation of combinational 
logic, particularly with PLDs. In both forms, an overbar 
cannot extend over more than one variable.

An expression is in SOP form when two or more product 
terms are summed as in the following examples:

An expression is in POS form when two or more sum 
terms are multiplied as in the following examples:

A B C + A B           A B C + C D C D + E
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SOP Standard form

In SOP standard form, every variable in the domain must 
appear in each term. This form is useful for constructing 
truth tables or for implementing logic in PLDs.
You can expand a nonstandard term to standard form by multiplying the 
term by a term consisting of the sum of the missing variable and its 
complement.

Convert X = A B + A B C to standard form. 

The first term does not include the variable C. Therefore, 
multiply it by the (C + C), which = 1:
X = A B (C + C) + A B C

= A B C + A B C + A B C
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POS Standard form

In POS standard form, every variable in the domain must 
appear in each sum term of the expression. 
You can expand a nonstandard POS expression to standard form by 
adding the product of the missing variable and its complement and 
applying rule 12, which states that (A + B)(A + C) = A + BC.

Convert X = (A + B)(A + B + C)     to standard form. 

The first sum term does not include the variable C. 
Therefore, add C C and expand the result by rule 12.
X = (A + B + C C)(A + B + C)

= (A +B + C )(A + B + C)(A + B + C)
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Binary representation of SOP and POS forms

SOP standard form

POS standard form

111110101 DCBA

000001010  DCBA

Converting standard SOP to POS

SOP standard form  

The equivalent POS standard form contains the other 
three remaining terms

111101011010000 
 ABCCBABCACBACBA

110100,001 and

))()(( CBACBACBA 
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Converting SOP to truth table

1. First list all possible combinations of binary values of the 
variables in the expression.

2. Convert the SOP to standard form if it is not already.

3. Place a 1 in the output column for each binary value that makes 
the standard SOP expression a 1 and place a 0 for all the 
remaining binary values
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Example: Develop a Truth Table for the standard SOP Expression :‐

ABCCBACBA 
Solution :Three  variables, then 8 possible combinations.
For each product term in the Expression, place (1) in o/p, and place (0) 
in for the other terms in o/p  
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•Array of cells, each cell represents one possible product term

•It is a tool for simplifying combinational logic with 3 or 4 variables. 

• For 3 variables, 8 cells are required (23).

•Each cell is adjacent to cells that are immediately next to it on any of 
its four sides.

•A cell is not adjacent to the cells that diagonally touch any of its 
corners.

• “wrap-around” adjacency means the top row is adjacent to the 
bottom row and left column to right column. 

Karnaugh maps
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Grouping the 1s

•A group must contain either 1, 2, 4, 8, or 16 cells.

•Each cell in a group must be adjacent to one or more cells in that 
same group. 

•Include the largest possible # of 1s in a group in accordance with 
rule 1

•Each 1 on the map must  be included in at least one group.

The goal is to maximize the size of the groups and to minimize the 
number of the groups
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1. Group the 1’s into two overlapping 
groups as indicated.

2. Read each group by eliminating any 
variable that changes across a 
boundary. 

3. The vertical group is read AC.

K-maps can simplify combinational logic by grouping 
cells and eliminating variables that change. 

Karnaugh maps

1

1 1

AB
C

00 

01

11

10

0         1

1

1 1

AB
C

00 

01

11

10

0         1

Group the 1’s on the map and read the minimum logic.

B changes 
across this 
boundary

C changes 
across this 
boundary

4. The horizontal group is read AB.

X = AC +AB
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A 4-variable map has an adjacent cell on each of its four 
boundaries as shown.  

AB

AB

AB

AB

CD CD CD CD
Each cell is different only by one 
variable from an adjacent cell.
Grouping follows the rules given 
in the text.
The following slide shows an 
example of reading a four 
variable map using binary 
numbers for the variables…

Karnaugh maps
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X

Karnaugh maps
Group the 1’s on the map and read the minimum logic.

1. Group the 1’s into two separate 
groups as indicated.

2. Read each group by eliminating 
any variable that changes across a 
boundary. 

3. The upper (yellow) group is read as 
AD.

4. The lower (green) group is read as 
AD.

AB
CD

00 

01

11

10

00       01      11     10

1 1

1 1

1

1

1

1

AB
CD

00 

01

11

10

00       01      11     10

1 1

1 1

1

1

1

1

X = AD +AD

B changes

C changes

B changes

C changes across 
outer boundary
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