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Lecture Ten 

Resonance 

10.1 Introduction 

        This lecture will introduce the very important resonant (or tuned) circuit, which is 

fundamental to the operation of a wide variety of electrical and electronic systems in use today. 

The resonant circuit is a combination of R, L, and C elements having a frequency response 

characteristic similar to the one appearing in Fig. 10.1. Note in the figure that the response is a 

maximum for the frequency fr, decreasing to the right and left of this frequency. In other words, 

for a particular range of frequencies the response will be near or equal to the maximum. The 

frequencies to the far left or right have very low voltage or current levels and, for all practical 

purposes, have little effect on the system’s response. The radio or television receiver has a 

response curve for each broadcast station of the type indicated in Fig. 10.1.  

 

Fig. 10.1 Resonance curve. 

 

10.2 Series Resonant Circuit  

          A resonant circuit (series or parallel) must have an inductive and a capacitive element. A 

resistive element will always be present due to the internal resistance of the source (Rs), the 

internal resistance of the inductor (Rl), and any added resistance to control the shape of the 

response curve (Rdesign). The basic configuration for the series resonant circuit appears in Fig. 

10.2(a) with the resistive elements listed above. The “cleaner” appearance of Fig. 10.2(b) is a 

result of combining the series resistive elements into one total value. That is,  

            R = Rs + Rl + Rd                                                                                                     (10.1) 
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Fig. 10.2 Series resonant circuit. 

The total impedance of this network at any frequency is determined by  

            ZT = R + j XL  ̶  j XC = R + j (XL ̶  XC )  

The resonant conditions described in the introduction will occur when  

            XL= XC                                                                                                                     (10.2)  

removing the reactive component from the total impedance equation. The total impedance at 

resonance is then simply  

             ZTs = R                                                                                                                    (10.3)  

       The resonant frequency can be determined in terms of the inductance and capacitance by 

examining the defining equation for resonance [Eq. (10.2)]:  

              𝝎𝒔 =
𝟏

√𝑳𝑪
                                                                                                                 (10.4)  

or          𝒇𝒔 =
𝟏

𝟐𝝅√𝑳𝑪
                                                                                                              (10.5)                 

L = henries (H), C = farads (F),  f = hertz (Hz)  

The current through the circuit at resonance is  

               𝑰 =
𝑬∠𝟎°

𝑹∠𝟎°
=

𝑬

𝑹
∠𝟎° 

which you will note is the maximum current for the circuit of Fig. 10.2 for an applied voltage E 

since ZT is a minimum value.  

The average power to the resistor at resonance is equal to I2 R, and the reactive power to the 

capacitor and inductor are I2 XC and I2 XL, respectively.  

The total apparent power is equal to the average power dissipated by the resistor since QL = QC. 

The power factor of the circuit at resonance is  
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            pF = cos θ = 
𝑷

𝑺
= 𝟏                                                                                                  (10.6) 

Plotting the power curves of each element on the same set of axes (Fig. 10.3), we note that, even 

though the total reactive power at any instant is equal to zero. 

 

Fig. 10.3 Power curves at resonance for the series resonant circuit. 

 

10.3 The Quality Factor (Q)  

           The quality factor Q of a series resonant circuit is defined as the ratio of the reactive power 

of either the inductor or the capacitor to the average power of the resistor at resonance. The 

quality factor is also an indication of how much energy is placed in storage (continual transfer 

from one reactive element to the other) compared to that dissipated.  

           𝑸𝒔 =  
𝑿𝑳

𝑹
=

𝝎𝒔𝑳

𝑹
=

𝟏

𝝎𝒔𝑪𝑹
                                                                                             (10.7) 

Also   𝑸𝒔 =  
𝟏

𝑹
√

𝐿

𝐶
                                                                                                                (10.8) 

By applying the voltage divider rule to the circuit of Fig. 10.2, we obtain 

           VLs = Qs E 

           VCs = Qs E 

Since Qs is usually greater than 1, the voltage across the capacitor or inductor of a series resonant 

circuit can be significantly greater than the input voltage. 

10.4 ZT Versus Frequency  

The total impedance of the series R-L-C circuit of Fig. 10.2 at any frequency is determined by 

                 ZT = R+ j XL  ̶  j XC       or           ZT = R + j (XL  ̶  XC)  
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The magnitude of the impedance ZT versus frequency is determined by  

                𝒁𝑻 = √[𝑹]𝟐 + [𝑿𝑳 − 𝑿𝑪]𝟐  

The total-impedance-versus-frequency curve for the series resonant circuit of Fig. 10.2 can be 

found by applying the impedance-versus- frequency curve for each element of the equation just 

derived, written in the following form:  

       𝒁𝑻(𝒇) = √[𝑹(𝒇)]𝟐 + [𝑿𝑳(𝒇) − 𝑿𝑪(𝒇)]𝟐    𝑜𝑟    𝒁𝑻(𝒇) = √[𝑹(𝒇)]𝟐 + [𝑿(𝒇)]𝟐                  (10.9)  

 

where ZT (f) “means” the total impedance as a function of frequency.  

For the frequency range of interest, we will assume that the resistance 

R does not change with frequency. The curve for the inductance, as 

determined by the reactance equation, is a straight line intersecting 

the origin with a slope equal to the inductance of the coil. Thus, for 

the coil,  

        XL = 2π L. f + 0    

           y = a . x   + b 

(where 2πL is the slope), producing the XL results is straight line 

shown in Fig. 20.4. 

 For the capacitor,  

         𝑿𝑪  =
𝟏

𝟐𝝅𝒇𝑪
   𝐨𝐫    𝑿𝑪𝒇 =

𝟏

𝟐𝝅𝑪
   

which becomes y.x = k, the equation for a hyperbola, where  

y (variable) =XC,        x (variable) = f,                 k (constant) = 
1

2𝜋𝐶
   

The hyperbolic curve for XC(f) is plotted in Fig. 10.4. In particular, note its very large magnitude 

at low frequencies and its rapid drop- off as the frequency increases.  

          The condition of resonance is now clearly defined by the point of intersection, where XL= 

XC . For frequencies less than fs , it is also quite clear that the network is primarily capacitive (XC 

> XL ). For frequencies above the resonant condition, XL > XC , and the network is inductive. 

Applying eq. (10.9) to the curves of Fig. 10.4, we obtain the curve for ZT (f) as shown in Fig. 

10.5. The minimum impedance occurs at the resonant frequency and is equal to the resistance R. 

Note that the curve is not symmetrical about the resonant frequency (especially at higher values 

of ZT).  

Fig. 10.4 Placing the frequency response of  

the inductive and capacitive reactance of a  

series  R-L-C circuit on the same set of axes. 

Fig. 10.5 ZT versus frequency for the  

series resonant circuit. 
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The phase angle associated with the total impedance is  

           𝜽 = 𝐭𝐚𝐧−𝟏 (𝑿𝑳−𝑿𝑪)

𝑹
                                                                                                   (10.10)  

At low frequencies, XC > XL, and v will approach  ̶ 90° (capacitive), as shown in Fig. 10.6, 

whereas at high frequencies, XL > XC, and v will approach 90°In general, therefore, for a series 

resonant circuit:  

f < fs: network capacitive; I leads E 

f > fs: network inductive; E leads I 

f = fs: network resistive; E and I are in phase. 

 

Fig. 10.6 Phase plot for the series resonant circuit. 

 

10.5 Selectivity  

If we now plot the magnitude of the current I = E/ZT versus frequency for a fixed applied voltage 

E, we obtain the curve shown in Fig. 10.7, which rises from zero to a maximum value of E/R 

(where ZT is a minimum) and then drops toward zero (as ZT increases) at a slower rate than it rose 

to its peak value. The curve is actually the inverse of the impedance-versus-frequency curve. 

Since the ZT curve is not absolutely symmetrical about the resonant frequency, the curve of the 

current versus frequency has the same property. 

 

Fig. 10.7 I versus frequency for the series resonant circuit. 
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           There is a definite range of frequencies at which the current is near its maximum value and 

the impedance is at a minimum. Those frequencies corresponding to 0.707 of the maximum 

current are called the band frequencies, cutoff frequencies, or  half-power frequencies. They 

are indicated by f1 and f2 in Fig. 10.7. The range of frequencies between the two is referred to as 

the bandwidth (abbreviated BW) of the resonant circuit. Half-power frequencies are those 

frequencies at which the power delivered is one-half that delivered at the resonant frequency; that 

is,  

               PHPF = 
𝟏

𝟐
   Pmax                                                                                                     (10.11) 

 

             Since the resonant circuit is adjusted to select a band of frequencies, the curve of Fig. 

10.7 is called the selectivity curve. The term is derived from the fact that one must be selective in 

choosing the frequency to ensure that it is in the bandwidth. The 

smaller the bandwidth, the higher the selectivity. The shape of 

the curve, as shown in Fig. 10.8, depends on each element of the 

series R-L-C circuit. Substituting √𝟐𝑹 into the equation for the 

magnitude of ZT, we find that  

                   𝒁𝑻 = √[𝑹]𝟐 + [𝑿𝑳 − 𝑿𝑪]𝟐  

becomes    √𝟐𝑹 = √[𝑹]𝟐 + [𝑿𝑳 − 𝑿𝑪]𝟐  

or, squaring both sides, that  

                  R2 = (XL  ̶  XC )2 → R = XL ̶  XC 

Let us first consider the case where XL > XC , which relates to f2 

or ω2 . Substituting ω2L for XL and 1/ω2C for XC. 

can be written  

               𝝎𝟐
𝟐 −

𝑹

𝑳
𝝎𝟐 −

𝟏

𝑳𝑪
= 𝟎 

Solving the quadratic, we have  

               𝒇𝟐 =
𝟏

𝟐𝛑
[

𝐑

𝟐𝐋
+

𝟏

𝟐
√(

𝐑

𝐋
)

𝟐
+

𝟒

𝐋𝐂
 ]                                                                        (10.12) 

 If we repeat the same procedure for XC > XL, which relates to ω1 or f1, the solution f1 becomes 

FIG. 10.8 

Effect of R, L, and C on the selectivity curve 

for the series resonant circuit. 
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 𝒇𝟏 =
𝟏

𝟐𝛑
[−

𝐑

𝟐𝐋
+

𝟏

𝟐
√(

𝐑

𝐋
)

𝟐
+

𝟒

𝐋𝐂
 ]                                                                (10.13) 

The bandwidth (BW) is 

              BW = f2   ̶ f1 =  Eq. (10.12)    ̶  Eq. (10.13) 

and         𝑩𝑾 =  𝒇𝟐  ̶  𝒇𝟏  =
𝐑

𝟐𝛑𝐋
                                                                                        (10.14) 

               𝑩𝑾 =  
𝒇𝐬

𝐐𝐬
                                                                                                           (10.15)  

The ratio BW/fs is sometimes called the fractional bandwidth, providing an indication of the 

width of the bandwidth compared to the resonant frequency. 

               𝒇𝒔 = √𝒇𝟐𝒇𝟏                                                                                                        (10.16) 

10.6 VR, VL, AND VC 

          Plotting the magnitude (effective value) of the voltages VR, VL, and VC and the current I 

versus frequency for the series resonant circuit on the same set of axes, we obtain the curves 

shown in Fig. 10.9. Note that the VR curve has the same shape as the I curve and a peak value 

equal to the magnitude of the input voltage E. If Q <10 the capacitor max voltage at fCmax < fs, 

while the inductor max voltage at fLmax > fs. 

The higher the Qs of the circuit, the closer fCmax will be to fs, and the closer VCmax ≅ QsE,  

and the closer fLmax will be to fs, and the closer VLmax ≅ QsE,  

 

FIG. 10.9 VR, VL, VC, and I versus frequency for a series resonant circuit. 

          For the condition Qs ≥ 10, the curves of Fig. 10.9 will appear as shown in Fig. 10.10. Note 

that they each peak (on an approximate basis) at the resonant frequency and have a similar shape. 
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FIG. 10.10 VR, VL, VC, and I for a series resonant circuit where Qs ≥ 10. 

In review, 

1. VC and VL are at their maximum values at or near resonance (depending on Qs). 

2. At very low frequencies, VC is very close to the source voltage and VL is very close to zero 

volts, whereas at very high frequencies, VL approaches the source voltage and VC approaches 

zero volts. 

3. Both VR and I peak at the resonant frequency and have the same shape. 

 

10.7 Examples (Series Resonance) 

Example 10.1: 

a. For the series resonant circuit of Fig. 10.11, find I, VR, VL, and VC at resonance. 

b. What is the Qs of the circuit? 

c. If the resonant frequency is 5000 Hz, find the bandwidth. 

d. What is the power dissipated in the circuit at the half-power frequencies? 

Solutions: 

a.   ZTs = R = 2 Ω 

      𝐼 =
𝐸

𝑍𝑇𝑠
= 5 𝐴 ∠0° 

     VR = E = 10 V ∠0° 

     VL = (I ∠0°)(XL∠90°) = (5 ∠0°)(10 ∠ 90°) = 50 V ∠90° 

     VC= (I ∠0°)(XC∠ −90°) = (5 ∠0°)(10 ∠ −90°) = 50 V ∠ −90° 

b.   𝑄𝑠 =
𝑋𝐿

𝑅
=

10Ω

2Ω
= 5 

c.    BW = f2  ̶  f1= 
𝑓𝑠

𝑄𝑠
=

5000𝐻𝑧

5
 =1000 Hz 

d.    PHPF = 
1

2
 Pmax = 

1

2
 I2

max R = 
1

2
 (5 A)2(2 Ω) = 25 W 

 

FIG. 10.11 Example 10.1. 
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Example 10.2: The bandwidth of a series resonant circuit is 400 Hz. 

a. If the resonant frequency is 4000 Hz, what is the value of Qs? 

b. If R = 10 Ω, what is the value of XL at resonance? 

c. Find the inductance L and capacitance C of the circuit. 

Solutions: 

a.    𝐵𝑊 =
𝑓𝑠

𝑄𝑠
 𝑜𝑟 𝑄𝑠 =

𝑓𝑠

𝐵𝑊
=

4000 𝐻𝑧

400 𝐻𝑧
= 10 

b.   𝑄𝑠 =
𝑋𝐿

𝑅
 𝑜𝑟 𝑋𝐿 =  𝑄𝑠𝑅 =  (10)(10 Ω) =  100 Ω 

c.   𝑋𝐿 =  2𝜋𝑓𝑠𝐿 𝑜𝑟 𝐿 =
𝑋𝐿

2𝜋𝑓𝑠
=

100 Ω

2𝜋(4000 𝐻𝑧)
= 3.98 𝑚𝐻 

      𝑋𝐶 =
1

2𝜋𝑓𝑠𝐶
 𝑜𝑟 𝐶 =

1

2𝜋𝑓𝑠𝑋𝐶
= 0.398 𝜇𝐹 

 

Example 10.3: A series R-L-C circuit has a series resonant frequency of 12,000 Hz. 

a. If R = 5 Ω, and if XL at resonance is 300 Ω, find the bandwidth. 

b. Find the cutoff frequencies. 

Solutions: 

a.   𝑄𝑠 =
𝑋𝐿

𝑅
=

300

5
= 60 

      𝐵𝑊 =
𝑓𝑠

𝑄𝑠
=

12000 𝐻𝑧

60
= 200 𝐻𝑧 

b. Since Qs ≥ 10, the bandwidth is bisected by fs. Therefore, 

             f2 = fs + 
𝐵𝑊

2
 = 12,000 Hz + 100 Hz = 12,100 Hz 

and       f1 = fs  ̶  
𝐵𝑊

2
 = 12,000 Hz   ̶ 100 Hz = 11,900 Hz 

 

Example 10.4: 

a. Determine the Qs and bandwidth for the response curve of 

Fig. 10.10. 

b. For C = 101.5 nF, determine L and R for the series 

resonant circuit. 

c. Determine the applied voltage. 
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Solutions: 

a. The resonant frequency is 2800 Hz. At 0.707 times the peak value, 

                     BW = 200 Hz 

and               𝑄𝑠 =
𝑓𝑠

𝐵𝑊
=

2800

200
= 14 

b.     𝒇𝒔 =
𝟏

𝟐𝝅√𝑳𝑪
   𝒐𝒓    𝑳 =

𝟏

𝟒𝝅𝟐𝒇𝒔
𝟐𝑪

 

            =
1

4𝜋2(2.8×103 𝐻𝑧)2(101.5×10−9 𝐹)
= 31.832 mH 

      𝑄𝑠 =
𝑋𝐿

𝑅
      𝑜𝑟  𝑅 =

𝑋𝐿

𝑄𝑠
=

2𝜋(2800 𝐻𝑧)(31.832×10−3 𝐻)

14
= 40 Ω 

c.      Imax = E/R              or       E = ImaxR = (200 mA)(40 Ω) = 8 V 

 

Example 10.5: A series R-L-C circuit is designed to resonant at ωs = 105 rad/s, have a bandwidth 

of 0.15ωs, and draw 16 W from a 120-V source at resonance. 

a. Determine the value of R. 

b. Find the bandwidth in hertz. 

c. Find the nameplate values of L and C. 

d. Determine the Qs of the circuit. 

e. Determine the fractional bandwidth. 

Solutions: 

a.      𝑃 =
𝐸2

𝑅
 𝑎𝑛𝑑 𝑅 =

𝐸2

𝑃
=

(120 𝑉)2

16
= 900 Ω 

b.      𝑓𝑠 =
𝜔𝑠

2𝜋
= 15,915.49 𝐻𝑧 

         BW = 0.15fs = 0.15(15,915.49 Hz) = 2387.32 Hz 

c. Eq. (10.14): 

          𝐵𝑊 =
R

2πL
    and 𝐿 =

R

2π BW
=

900 Ω

2𝜋(2387.32 𝐻𝑧)
= 60 𝑚𝐻 

          𝑓𝑠 =
1

2𝜋√𝐿𝐶
   𝑜𝑟    𝐶 =

1

4𝜋2𝑓𝑠
2𝐿

=
1

4𝜋2(2387.32 𝐻𝑧)2(60×10−3 𝐻)
= 1.67 nF 

d.      𝑄𝑠 =
𝑋𝐿

𝑅
=

2𝜋𝑓𝑠𝐿

𝑅
=

2𝜋(15,915.49 𝐻𝑧)(60 𝑚𝐻)

900 Ω
= 6.67 

e.       
𝑓2−𝑓1

𝑓𝑠
=

𝐵𝑊

𝑓s

 =  
1

Qs
=

1

6.67
= 0.15 

 

 

FIG. 10.12 Example 10.4. 
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10.8 Parallel Resonant Circuit 

The basic format of the series resonant circuit is a series R-

L-C combination in series with an applied voltage source. 

The parallel resonant circuit has the basic configuration of 

Fig. 10.16, a parallel R-L-C combination in parallel with an 

applied current source. 

For the series circuit, the impedance was a minimum at 

resonance. For the parallel resonant circuit, the impedance is 

relatively high at resonance. For the network of Fig. 10.16, 

resonance will occur when XL = XC, and the resonant 

frequency will have the same format obtained for series 

resonance. 

In the practical world, the internal resistance of the coil Rl must be placed in series with the 

inductor, as shown in Fig. 10.17. Our first effort will be to find a parallel network equivalent (at 

the terminals) for the series R-L branch of Fig. 10.17. That is, 

        ZR-L = Rl + j XL   →   YR-L = 
1

𝑅𝑝
+

1

𝑗𝑋𝐿𝑃
 

        Rp = 
𝑹𝒍

𝟐+𝑿𝑳
𝟐

𝑹𝒍
 ,     XLp = 

𝑹𝒍
𝟐+𝑿𝑳

𝟐

𝑿𝑳
                                                                                       (10.17) 

as shown in Fig. 10.18. 

If we define the parallel combination of Rs and Rp 

by the notation 

       R = Rs || Rp                        

the network of Fig. 10.20 will result. It has the same 

format as the ideal configuration of Fig. 10.16.  

 

         

FIG. 10.19 Substituting the equivalent parallel network for                    FIG. 10.20 Substituting R = Rs || Rp for 

FIG. 10.16 

Ideal parallel resonant network. 

FIG. 10.17 

Practical parallel L-C network. 

FIG. 10.18 Equivalent parallel network 

for a series R-L combination. 
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            the series R-L combination of Fig. 20.22.                                                  the network of Fig. 10.19. 

 

Unity Power Factor, fp 

For the network of Fig. 10.20, 

           𝒀𝑻 =
𝟏

𝒁𝟏
+

𝟏

𝒁𝟐
+

𝟏

𝒁𝟑
=

𝟏

𝑹
+ 𝒋 (

𝟏

𝑿𝑪
−

𝟏

𝑿𝑳𝒑
)                                                                     (10.18) 

For unity power factor, the reactive component must be zero as defined by 

           
𝟏

𝑿𝑪
−

𝟏

𝑿𝑳𝒑
= 0 

Therefore,         XC = XLp                                                                                                   (10.19) 

Substituting for XLp yields 

          
𝑹𝒍

𝟐+𝑿𝑳
𝟐

𝑿𝑳
= 𝑿𝑪                                                                                                               (10.20) 

The resonant frequency, fp, can now be determined from Eq. (10.20) as follows: 

          𝒇𝒑 =
𝟏

𝟐𝝅√𝑳𝑪
√𝟏 −

𝑹𝒍
𝟐𝑪

𝑳
                                                                                                (10.21) 

          𝒇𝒑 = 𝒇𝒔√𝟏 −
𝑹𝒍

𝟐𝑪

𝑳
                                                                                                     (10.22) 

where fp is the resonant frequency of a parallel resonant circuit (for pF = 1) and fs is the resonant 

frequency as determined by XL = XC for series resonance. Note that unlike a series resonant 

circuit, the resonant frequency fp is a function of resistance (in this case Rl) and less than fs. 

Recognize also that as the magnitude of Rl approaches zero, fp rapidly approaches fs. 

 

Maximum Impedance, fm 

At f = fp the input impedance of a parallel resonant circuit will be near its maximum value but not 

quite its maximum value due to the frequency dependence of Rp. The frequency at which 

maximum impedance will occur is defined by fm and is slightly more than fp, as demonstrated in 

Fig. 10.21. The resulting equation, however, is the following: 

             𝒇𝒎 = 𝒇𝒔√𝟏 −
𝟏

𝟒
(

𝑹𝒍
𝟐𝑪

𝑳
)                                                                                           (10.23) 

fm is always closer to fs and more than fp. In general, 

                 fs > fm > fp 
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Once fm is determined, the network of Fig. 10.20 can be used to determine the magnitude and 

phase angle of the total impedance at the resonance condition simply by substituting  f = fm and 

performing the required calculations. That is, 

              ZTm = R || XLp || XC                   f = fm                                                                 

(10.24) 

 

10.9 Selectivity Curve for Parallel Resonant Circuits 

The ZT -versus-frequency curve of Fig. 10.21 clearly reveals that a parallel resonant circuit 

exhibits maximum impedance at resonance ( fm), unlike the series resonant circuit, which 

experiences minimum resistance levels at resonance. Note also that ZT is approximately Rl at f = 

0 Hz since ZT = Rs || Rl ≅ Rl. 

Since the current I of the current source is constant for any value of ZT or frequency, the voltage 

across the parallel circuit will have the same shape as the total impedance ZT.  

             VC  = Vp = I ZT                                                                                                                                                                                                        (10.25) 

The resonant value of VC is therefore determined by the value of ZTm and the magnitude of the 

current source I. We can speak of the Q of the coil, where 

           𝑄𝑐𝑜𝑖𝑙 = 𝑄𝑙 =
𝑋𝐿

𝑅
  

The quality factor of the parallel resonant circuit continues to be determined by the ratio of the 

reactive power to the real power. That is, 

            𝑄𝑝 =
𝑅

𝑋𝐿𝑝
=

𝑅

𝑋𝐶
                                                                                                        (10.26) 

where R = Rs || Rp, and Vp is the voltage across the parallel branches.  

For the ideal current source (Rs = ∞Ω) or when Rs is sufficiently large compared to Rp, we can 

make the following approximation: 

        R = Rs || Rp ≅ Rp 

        𝑄𝑝 =
𝑅

𝑋𝐿𝑝
= 𝑄𝑙      Rs >> Rl                                                                                        (10.27) 

which is simply the quality factor Ql of the coil. 

In general, the bandwidth is still related to the resonant frequency and the quality factor by 

         BW = f2  ̶  f1 = 
𝑓𝑟

𝑄𝑝
                                                                                                       (10.28) 

FIG. 10.21 ZT versus frequency for the 
parallel resonant circuit. 
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The cutoff frequencies f1 and f2 can be determined using the equivalent network of Fig. 10.20 

and the unity power condition for resonance. The half-power frequencies are defined by the 

condition that the output voltage is 0.707 times the maximum value.  

Setting the input impedance for the network of Fig. 10.20 equal to this value will result in the 

following relationship: 

            𝑍 =
1

1

𝑅
+𝑗(𝜔𝐶−

1

𝜔𝐿
)

= 0.707𝑅 

will result in the following after a series of careful mathematical manipulations: 

            𝑓1 =
1

4𝜋𝐶
[

1

𝑅
− √

1

𝑅2
+

4𝐶

𝐿
]                                                                                       (10.29a) 

            𝑓2 =
1

4𝜋𝐶
[

1

𝑅
+ √

1

𝑅2
+

4𝐶

𝐿
]                                                                                       (10.29b) 

The effect of Rl, L, and C on the shape of the parallel resonance curve, as shown in Fig. 10.22 for 

the input impedance, is quite similar 

 

FIG. 10.22 Effect of Rl, L, and C on the parallel resonance curve. 

 

 

FIG. 10.23 Phase plot for the parallel resonant circuit. 

 

10.10 Effect of Ql ≥ 10 
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    The quality factor of the coil Ql is sufficiently large to permit a number of approximations that 

simplify the required analysis. 

Inductive Reactance, XLp 

        XLp ≅  XL             Ql ≥ 10 

and since resonance is defined by XLp = XC, the resulting condition for resonance is reduced to: 

        XL ≅  XC             Ql ≥ 10 

Resonant Frequency, fp (Unity Power Factor) 

       𝒇𝒑 = 𝒇𝒔√𝟏 −
𝟏

𝑸𝒍
𝟐     Ql ≥ 10    

       𝒇𝒑 ≅ 𝒇𝒔 =
𝟏

𝟐𝝅√𝑳𝑪
    Ql ≥ 10 

Resonant Frequency, fm (Maximum VC) 

        𝒇𝒎 = 𝒇𝒔√𝟏 −
𝟏

𝟒
(

𝟏

𝑸𝒍
𝟐)  Ql ≥ 10 

        𝒇𝒎 ≅ 𝒇𝒔 =
𝟏

𝟐𝝅√𝑳𝑪
       Ql ≥ 10 

Rp 

        Rp  ≅ Q2
l Rl 

        𝑹𝒑 ≅
𝑳

𝑹𝒍𝑪
                      Ql ≥ 10 

ZTp 

The total impedance at resonance is now defined by 

        ZTp = Rs  || Rp = Rs || Q2
l Rl               Ql ≥ 10 

        ZTp ≅ Q2
l Rl                                       Ql ≥ 10    Rs >> Rp 

Qp 

The quality factor is now defined by 

          𝑄𝑝 =
𝑅

𝑋𝐿𝑝
≅

𝑅𝑠||𝑄𝑙
2𝑅𝑙

𝑋𝐿
 

          Qp ≅ Ql         Ql ≥ 10    Rs >> Rp   

BW 

The bandwidth defined by fp is 

           BW = f2   ̶ f1 = 
𝑓𝑝

𝑄𝑝
≅

1

2𝜋
[

𝑅𝑙

𝐿
+

1

𝑅𝑠𝐶
] 

           BW = f2   ̶ f1  ≅
𝑅𝑙

2𝜋𝐿
             Rs = ∞Ω  
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IL and IC 

IT defined as shown. 

    VC = VL = VR = IT ZTp = IT Q2
l Rl 

    IC ≅ Ql IT        Ql ≥ 10 

    IL ≅ Ql IT        Ql ≥ 10 

10.11 Examples (Parallel Resonance) 

Example 10.6: Given the parallel network of Fig. 10.24 composed of “ideal” elements: 

a. Determine the resonant frequency fp. 

b. Find the total impedance at resonance. 

c. Calculate the quality factor, bandwidth, and cutoff frequencies f1 and f2 of the system. 

d. Find the voltage VC at resonance. 

e. Determine the currents IL and IC at resonance. 

 

FIG. 10.24 Example 10.6. 

Solutions: 

a. The fact that Rl is zero ohms results in a very high Ql (= XL/Rl), permitting 

the use of the following equation for fp: 

                 

b. For the parallel reactive elements: 

                  

but XL = XC at resonance, resulting in a zero in the denominator of the equation and a very high 

impedance that can be approximated by an open circuit. Therefore, 



    

       

Al-Mustaqbal University                                   17/23                                        https://www.uomus.edu.iq/ 

Stage: Second 

Subject: Electric Circuits 2 

Lecturer: Assist. Prof. Dr. Hamza Mohammed Ridha Al-Khafaji 

E-mail: hamza.alkhafaji@uomus.edu.iq   

 

Eq. (10.29a): 

          

Eq. (10.29b): 

 

Example 10.7 For the parallel resonant circuit of Fig. 10.25 with Rs = ∞Ω: 

a. Determine fs, fm, and fp, and compare their levels. 

b. Calculate the maximum impedance and the magnitude of the voltage VC at fm. 

c. Determine the quality factor Qp. 

d. Calculate the bandwidth. 

e. Compare the above results with those obtained using the equations associated with Ql ≥10. 

 

FIG. 10.25 Example 10.7. 
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Both fm and fp are less than fs, as predicted. In addition, fm is closer to fs than fp, as forecast. fm 

is about 0.5 kHz less than fs, whereas fp is about 2 kHz less. The differences among fs, fm, and fp 

suggest a low-Q network. 

 

 

 

The low Q confirms our conclusion of part (a). The differences among fs, fm, and fp will be 

significantly less for higher-Q networks. 
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Example 10.8: For the network of Fig. 10.26 with fp provided: 

a. Determine Ql.  

b. Determine Rp. 

c. Calculate ZTp. 

d. Find C at resonance. 

e. Find Qp. 

f. Calculate the BW and cutoff frequencies.     

 

FIG. 10.26 Example 10.8. 
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Note that f2  ̶  f1 = 40.843 kHz  ̶  39.009 kHz = 1.834 kHz, confirming our solution for the 

bandwidth above. Note also that the bandwidth is not symmetrical about the resonant frequency, 

with 991 Hz below and 843 Hz above. 

 

Example 10.9: The equivalent network for the transistor configuration of Fig. 10.27 is provided 

in Fig. 10.28.  

a. Find fp. 

b. Determine Qp. 

c. Calculate the BW. 

d. Determine Vp at resonance. 

e. Sketch the curve of VC versus frequency. FIG. 10.27 Example 10.9. 
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Therefore, fp = fs = 318.31 kHz. Using Eq. (20.31) would result 

in  ≅318.5 kHz. 

 

On the other hand, 

 

compares very favorably with the above solution. 

d. Vp = I ZTp = (2 mA)(Rs || Rp) = (2 mA)(47.62 kΩ) 

= 95.24 V 

e. See Fig. 10.29. 

 

 

 

 

 

 

 

 

 

FIG. 10.28 

Equivalent network for the transistor 

configuration of Fig. 10.27. 

FIG. 10.29 Resonance curve  

for the network of Fig. 10.28. 
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Example 10.10: Repeat Example 10.9, but ignore the effects of Rs, and compare results. 

Solutions: 

a. fp is the same, 318.31 kHz. 

b. For Rs = ∞ Ω, 

 

The results obtained clearly reveal that the source resistance can have a significant impact on the 

response characteristics of a parallel resonant circuit. 

 

Example 10.11: Design a parallel resonant circuit to have the response curve of Fig. 10.30 using 

a 1-mH, 10-Ω inductor and a current source with an internal resistance of 40 kΩ. 

Solution: 

                         BW _fp_Qp 

 

However, the source resistance was given as 40 kΩ. We must therefore add a parallel resistor (R′) 

that will reduce the 40 kΩ to approximately 17.298 kΩ; that is, 

FIG. 10.30 Example 10.11. 
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Solving for R′: 

                       R′= 30.481 kΩ 

The closest commercial value is 30 kΩ. At resonance, XL = XC, and 

 

The network appears in Fig. 10.31. 

 

FIG. 10.31 Network designed to meet the criteria of Fig. 10.30. 

 

  


