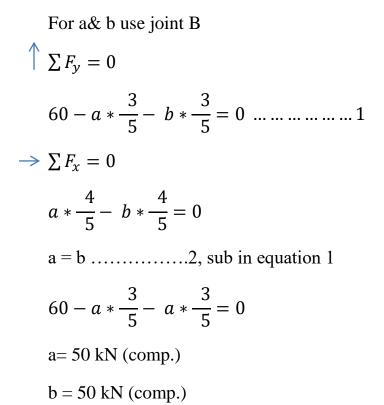

Ex4: For the compound truss shown in fig. Find

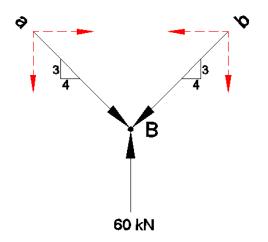
- i- Reaction at supports.
- ii- Axial force in bars a & b

i) Reaction at supports

$$\frac{y}{3} = \frac{1.5}{2} => y = 2.25$$

From fig 1

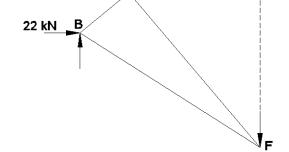

 $\sum M_m = 0$ (H*2.25) + (V*7) - (60*3) = 0
2.25H + 7V - 180 = 01


From fig 2

$\sum M_n = 0$
H * 2.25 - V * 7 = 0
$H = \frac{7\mathrm{V}}{2.25} \dots \dots$
Sub equation 2 in equation 1
$2.25 * \frac{7V}{2.25} + 7 * V - 180 = 0$
V = 12.86 kN
$H = \frac{7 * 12.86}{2.25} = 40 \ kN$
From fig 1
$\sum M_D = 0$
(Ay*5) + (40*1.5) - (12.86*2) - (60*2) = 0
Ay = 17.14 kN ↑
From fig 2
$\sum M_E = 0$
(Cy*5) - (12.86*2) - (40*1.5) = 0
$Cy = 17.14 \text{ kN} \downarrow$
From the whole truss
$\sum F_X = 0$, $\Rightarrow Bx = 0$
$\sum F_{\mathcal{Y}} = 0$
17.14 - 17.14 - 60 + By = 0
By = 60 kN

 \uparrow

ii) Axial force in bars a&b


****14

110 kN С D 3 m 22 kN В Е 5 m A F 3 m 5 m 3 m

Ex5: For the compound truss shown in fig. find the axial force in bars a, b &c

$$\sum M_A = 0$$
(22*5) + (110*8) - (By*11) = 0
By = 90 kN ^
 $\sum F_y = 0$, => Ay + 90 - 110 = 0 => Ay = 20 kN ^
 $\implies \sum F_X = 0$, => 22 - Ax = 0 => Ax = 22 kN \iff

 $\sum M_0 = 0$ $C*11 - 22*3 = 0 \Longrightarrow C = 6 \text{ kN (comp.)}$ By = 90 kN $\bigwedge \sum F_y = 0$ $90 + 6 - b = 0 \implies b = 96 \text{ kN (comp.)}$ $\rightarrow \sum F_x = 0$ $22 - a = 0 \implies a = 22$ kN (comp.)

C

0