وزارة التعليم و البحث العلمي جامعة المستقبل قسم الفيزياء الطبية المرحلة الاولى مختبر الميكانيك ال

تجربة قانون بويل Boyle's Law experiment

The aim of Experiment: Boyle's Law Investigation and Measure the pressure of the atmosphere.

Apparatus: 1-A ruler of metric scale . (100cm)

- 2-Glass tube connected with a closed plastic tube at the end .
- 3-Liquid mercury (Hg).

□Theory:

*Boyle's law states that, for constant temperature, the product of the volume and the pressure of an ideal gas is a constant.

```
*PV=C....(1)
```

- *The ideal gas law PV=nRT (2)
- *states that this constant (nRT) is proportional to the amount of ideal gas in the sample (the number of moles, n).
- *The absolute temperature, T.
- *The constant R in this equation is the universal gas constant which has a value of R=8.31 [/(mole.K)] in SI unit.
- *Note that if T is held constant throughout the experiment, then the ideal gas law reduces to Boyle's law.
- *An experiment to investigate Boyle's law is carried out with the apparatus shown in the digram.
- *The pressure and volume of the gas (air) trapped in the closed end can be varied by raising or lowering the other end.
- *By measuring the difference in levels of mercury in the two tubes the pressure of the gas in the closed end can be calculated.
- *The volume of gas in this end can be calculated by assuming that the glass tube is a cylinder.

Diagram of Experiment:

Table of reading:

h(cm)	L cm	1/L (cm ⁻ ')	P=ρgh	V(cm²)
0	12			
5	11.5			
10	11			
10 15	10.5			
20	10			

Results and your calculation:

```
P=pgh ..... (1)

p= density of Mercury (Hg)= 13600Kg/m²

1mm.Hg =132.3 pa .

g= 9.8 m/sec^2 or =10 m/sec^2

v=4π^2 L
```