7.3 The Jacobi and Gauss-Seidel Iterative Methods

The Jacobi Method

Two assumptions made on Jacobi Method:

1. The system given by

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

Has a unique solution.

2. The coefficient matrix A has no zeros on its main diagonal, namely, a_{11} , a_{22} , ..., a_{nn} are nonzeros.

Main idea of Jacobi

To begin, solve the 1st equation for x_1 , the 2nd equation for x_2 and so on to obtain the rewritten equations:

$$x_{1} = \frac{1}{a_{11}} (b_{1} - a_{12}x_{2} - a_{13}x_{3} - \dots + a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{22}} (b_{2} - a_{21}x_{1} - a_{23}x_{3} - \dots + a_{2n}x_{n})$$

$$\vdots$$

$$x_{n} = \frac{1}{a_{22}} (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots + a_{n,n-1}x_{n-1})$$

Then make an initial guess of the solution $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots, x_n^{(0)})$. Substitute these values into the right hand side the of the rewritten equations to obtain the *first approximation*, $(x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots, x_n^{(1)})$.

This accomplishes one iteration.

In the same way, the *second approximation* $(x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, \dots, x_n^{(2)})$ is computed by substituting the first approximation's *x*-vales into the right hand side of the rewritten equations.

By repeated iterations, we form a sequence of approximations $\mathbf{x}^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, \dots, x_n^{(k)}\right)^t$, $k = 1, 2, 3, \dots$

<u>*The Jacobi Method.*</u> For each $k \ge 1$, generate the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$ from $\mathbf{x}^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1, \\ j \neq i}}^n (-a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i = 1, 2, , \dots n$$

Example. Apply the Jacobi method to solve

$$5x_1 - 2x_2 + 3x_n = -1$$

-3x₁ + 9x₂ + x_n = 2
2x₁ - x₂ - 7x_n = 3

Continue iterations until two successive approximations are identical when rounded to three significant digits.SolutionTo begin, rewrite the system

$$x_{1} = \frac{-1}{5} + \frac{2}{5}x_{2} - \frac{3}{5}x_{3}$$
$$x_{2} = \frac{2}{9} + \frac{3}{9}x_{1} - \frac{1}{9}x_{3}$$
$$x_{3} = -\frac{3}{7} + \frac{2}{7}x_{1} - \frac{1}{7}x_{2}$$

Choose the initial guess $x_1 = 0, x_2 = 0, x_3 = 0$ The first approximation is

$$x_{1}^{(1)} = \frac{-1}{5} + \frac{2}{5}(0) - \frac{3}{5}(0) = -0.200$$
$$x_{2}^{(1)} = \frac{2}{9} + \frac{3}{9}(0) - \frac{1}{9}(0) = 0.222$$
$$x_{3}^{(1)} = -\frac{3}{7} + \frac{2}{7}(0) - \frac{1}{7}(0) = -0.429$$

Continue iteration, we obtain

n	k = 0	k = 1	k = 2	<i>k</i> = 3	k = 4	k = 5	k = 6
$x_1^{(k)}$	0.000	-0.200	0.146	0.192			
$x_2^{(k)}$	0.000	0.222	0.203	0.328			
$x_2^{(k)}$	0.000	-0.429	-0.517	-0.416			

The Jacobi Method in Matrix Form

Consider to solve an $n \times n$ size system of linear equations $A\mathbf{x} = \mathbf{b}$ with $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ for $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

We split A into

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & \dots & 0 & 0 \\ -a_{21} & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots \\ -a_{n1} & \dots & -a_{n,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ 0 & 0 & & \vdots \\ \vdots & \vdots & \ddots & -a_{n-1,n} \\ 0 & 0 & \dots & 0 \end{bmatrix} = D - L - U$$

 $A\mathbf{x} = \mathbf{b}$ is transformed into $(D - L - U)\mathbf{x} = \mathbf{b}$

$$Dx = (L+U)x + b$$
Assume D^{-1} exists and $D^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \dots & 0 \\ 0 & \frac{1}{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{bmatrix}$

Then

 $\boldsymbol{x} = D^{-1}(L+U)\boldsymbol{x} + D^{-1}\boldsymbol{b}$

The matrix form of Jacobi iterative method is

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}$$
 $k = 1,2,3,...$

Define $T = D^{-1}(L+U)$ and $c = D^{-1}b$, Jacobi iteration method can also be written as $x^{(k)} = Tx^{(k-1)} + c$ k = 1,2,3,...

Numerical Algorithm of Jacobi Method

Input: $A = [a_{ij}], b, XO = x^{(0)}$, tolerance *TOL*, maximum number of iterations *N*. Step 1 Set k = 1Step 2 while $(k \le N)$ do Steps 3-6 Step 3 For for i = 1, 2, ..., n $x_i = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1, \\ j \ne i}}^n (-a_{ij} XO_j) + b_i \right],$ Step 4 If ||x - XO|| < TOL, then OUTPUT $(x_1, x_2, x_3, ..., x_n)$; STOP. Step 5 Set k = k + 1. Step 6 For for i = 1, 2, ..., nSet $XO_i = x_i$.

Step 7 OUTPUT $(x_1, x_2, x_3, \dots, x_n)$; STOP.

Another stopping criterion in Step 4: $\frac{||x^{(k)}-x^{(k-1)}||}{||x^{(k)}||}$

The Gauss-Seidel Method

Main idea of Gauss-Seidel

With the Jacobi method, the values of $x_i^{(k)}$ obtained in the *k*th iteration remain unchanged until the entire (k + 1)th iteration has been calculated. With the Gauss-Seidel method, we use the new values $x_i^{(k+1)}$ as soon as they are known. For example, once we have computed $x_1^{(k+1)}$ from the first equation, its value is then used in the second equation to obtain the new $x_2^{(k+1)}$, and so on.

Example. Derive iteration equations for the Jacobi method and Gauss-Seidel method to solve

$$5x_1 - 2x_2 + 3x_n = -1$$

-3x_1 + 9x_2 + x_n = 2
2x_1 - x_2 - 7x_n = 3

<u>The Gauss-Seidel Method.</u> For each $k \ge 1$, generate the components $x_i^{(k)}$ of $\mathbf{x}^{(k)}$ from $\mathbf{x}^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^n (a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i = 1, 2, \dots n$$

Namely,

$$a_{11}x_1^{(k)} = -a_{12}x_2^{(k-1)} - \dots - a_{1n}x_n^{(k-1)} + b_1$$

$$a_{21}x_1^{(k)} + a_{22}x_2^{(k)} = -a_{23}x_3^{(k-1)} - \dots - a_{2n}x_n^{(k-1)} + b_2$$

$$\vdots$$

$$a_{n1}x_1^{(k)} + a_{n2}x_2^{(k)} + \dots + a_{nn}x_n^{(k)} = b_n$$

Matrix form of Gauss-Seidel method.

$$(D-L)\mathbf{x}^{(k)} = U\mathbf{x}^{(k-1)} + \mathbf{b}$$

$$\mathbf{x}^{(k)} = (D-L)^{-1}U\mathbf{x}^{(k-1)} + (D-L)^{-1}\mathbf{b}$$
Define $T_g = (D-L)^{-1}U$ and $\mathbf{c}_g = (D-L)^{-1}\mathbf{b}$, Gauss-Seidel method can be written as
$$\mathbf{x}^{(k)} = T_g \mathbf{x}^{(k-1)} + \mathbf{c}_g \qquad k = 1,2,3,...$$

5

Numerical Algorithm of Gauss-Seidel Method

Input: $A = [a_{ij}]$, $b, XO = x^{(0)}$, tolerance *TOL*, maximum number of iterations *N*. Step 1 Set k = 1Step 2 while $(k \le N)$ do Steps 3-6 Step 3 For for i = 1, 2, ... n $x_i = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij}x_j) - \sum_{j=i+1}^{n} (a_{ij}XO_j) + b_i \right]$, Step 4 If ||x - XO|| < TOL, then OUTPUT $(x_1, x_2, x_3, ... x_n)$; Step 5 Set k = k + 1. Step 6 For for i = 1, 2, ... nSet $XO_i = x_i$. Step 7 OUTPUT $(x_1, x_2, x_3, ... x_n)$; STOP.

Convergence theorems of the iteration methods

Let	the	iteration	method	be	written	as
		$\boldsymbol{x}^{(k)} = T\boldsymbol{x}^{(k-1)} + \boldsymbol{c}$	for each $k = 1$	1,2,3,		

Lemma 7.18 If the spectral radius satisfies $\rho(T) < 1$, then $(I - T)^{-1}$ exists, and

$$(I - T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j$$

Theorem 7.19 For any $x^{(0)} \in \mathbb{R}^n$, the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by

 $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$ for each $k \ge 1$

converges to the unique solution of x = Tx + c if and only if $\rho(T) < 1$.

Proof (only show $\rho(T) < 1$ is sufficient condition)

 $\boldsymbol{x}^{(k)} = T\boldsymbol{x}^{(k-1)} + \boldsymbol{c} = T(T\boldsymbol{x}^{(k-2)} + \boldsymbol{c}) + \boldsymbol{c} = \dots = T^{k}\boldsymbol{x}^{(0)} + (T^{k-1} + \dots + T + I)\boldsymbol{c}$ Since $\rho(T) < 1$, $\lim_{k \to \infty} T^{k}\boldsymbol{x}^{(0)} = \boldsymbol{0}$

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{0} + \lim_{k \to \infty} (\sum_{j=0}^{k-1} T^j) \, \mathbf{c} = (I-T)^{-1} \mathbf{c}$$

Corollary 7.20 If ||T|| < 1 for any natural matrix norm and c is a given vector, then the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by $x^{(k)} = Tx^{(k-1)} + c$ converges, for any $x^{(0)} \in \mathbb{R}^n$, to a vector $x \in \mathbb{R}^n$, with x = Tx + c, and the following error bound hold:

(i) $||\mathbf{x} - \mathbf{x}^{(k)}|| \le ||T||^{k} ||\mathbf{x}^{(0)} - \mathbf{x}||$ (ii) $||\mathbf{x} - \mathbf{x}^{(k)}|| \le \frac{||T||^{k}}{1 - ||T||} ||\mathbf{x}^{(1)} - \mathbf{x}^{(0)}||$

Theorem 7.21 If *A* is strictly diagonally dominant, then for any choice of $x^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\{x^{(k)}\}_{k=0}^{\infty}$ that converges to the unique solution of Ax = b.

Rate of Convergence

Corollary 7.20 (i) implies $||x - x^{(k)}|| \approx \rho(T)^k ||x^{(0)} - x||$

Theorem 7.22 (Stein-Rosenberg) If $a_{ij} \le 0$, for each $i \ne j$ and $a_{ii} \ge 0$, for each i = 1, 2, ..., n, then one and only one of following statements holds:

- (i) $0 \le \rho(T_g) < \rho(T_j) < 1;$
- (ii) $1 < \rho(T_j) < \rho(T_g);$
- (iii) $\rho(T_j) = \rho(T_g) = 0;$
- (iv) $\rho(T_j) = \rho(T_g) = 1.$