Q1 (25\%):

Determine the allowable bearing capacity of the pile group ($Q_{\text {all }}$), shown In the figure if, $D=0.3 m, F s=2$ $X_{1}=4.57 \mathrm{~m}, X_{2}=17.72 \mathrm{~m}, C_{U 1}=50.3 \mathrm{kN} / \mathrm{m}^{2}$,
$\gamma_{\text {sat }} 1=17.6 \mathrm{kN} / \mathrm{m}^{3}, C_{U 2}=85.1 \mathrm{kN} / \mathrm{m}^{2}, \gamma_{\text {sat }}=19.02 \mathrm{kN} / \mathrm{m} 3$ The distance between piles $\mathrm{C}-\mathrm{C}, \mathrm{d}=0.889 \mathrm{~m}$

Table 11.10 Variation of α (interpolated values based on Terzaghi, Peck and Mesri, 1996)

$\frac{\boldsymbol{c}_{u}}{\boldsymbol{p}_{\boldsymbol{a}}}$	$\boldsymbol{\alpha}$
≤ 0.1	1.00
0.2	0.92
0.3	0.82
0.4	0.74
0.6	0.62
0.8	0.54
1.0	0.48
1.2	0.42
1.4	0.40
1.6	0.38
1.8	0.36
2.0	0.35
2.4	0.34
2.8	0.34

Note: $p_{a}=$ atmospheric pressure $\approx 100 \mathrm{kN} / \mathrm{m}^{2}$

Hint:

$\sum Q_{u}=n_{1} n_{2}\left[9 A_{b} C_{u}+\sum \alpha C_{u} P(\Delta L)\right]$
$\sum Q_{u}=L_{g} B_{g} C_{u} N_{C}^{*}+\sum 2\left(L_{g}+B_{g}\right) C_{u} \Delta L$

Q2 (25\%):

Compute the consolidation settlement of the pile group shown in the figure if, $\gamma_{1}=16 \mathrm{kN} / \mathrm{m}^{3}, \gamma_{\text {sat } 1}=20 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{s a t 2}=21 \mathrm{kN} / \mathrm{m}^{3}, q_{u 2}=100 \mathrm{kN} / \mathrm{m}^{2}$,
$e_{o 2}=0.7, C_{C 2}=0.13$,
$\gamma_{\text {sat } 3}=19 \mathrm{kN} / \mathrm{m}^{3}, q_{u 3}=110 \mathrm{kN} / \mathrm{m}^{2}$,
$e_{o 3}=0.95, C_{C 3}=0.15$,
$\gamma_{s a t 4}=20 \mathrm{kN} / \mathrm{m}^{3}, q_{u 4}=150 \mathrm{kN} / \mathrm{m}^{2}$, $e_{o 4}=0.8, C_{C 4}=0.12$.
The distance is measured from ground Surface to interface of each layer
$h_{1}=2 m, h_{2}=4 m, h_{3}=15 m, h_{4}=17 \mathrm{~m}$
$h_{5}=20 \mathrm{~m}$ and the diameter of each pile is
$D=0.5 \mathrm{~m}$, and $Q_{U}=2500 \mathrm{kN}$
Hint: use
$S_{f}=\frac{C_{c}}{1+e_{o}} H_{o} \log _{10}\left(\frac{\sigma_{o}^{\prime}+\Delta \sigma^{\prime}}{\sigma_{o}^{\prime}}\right)$

O3 (25\%):

Estimate the ultimate bearing capacity of the pile shown in the figure, if it penetrated a clay layer of thickness $L_{1}=5 \mathrm{~m}$ and continued in deep sandy layer to a depth of $L_{2}=7 \mathrm{~m}$. The diameter of the pile $D=0.5 m, C_{u}=40 \mathrm{kN} / \mathrm{m}^{3}, \gamma_{1}=16 \mathrm{KN} / \mathrm{m}^{3}, \gamma_{2}=18 \mathrm{KN} / \mathrm{m}^{3}, \emptyset=30^{\circ}, \mathrm{k}=1.5$

Table 11.10 Variation of α (interpolated values based on Terzaghi, Peck and Mesri, 1996)

$\frac{\boldsymbol{c}_{u}}{\boldsymbol{p}_{\boldsymbol{a}}}$	$\boldsymbol{\alpha}$
≤ 0.1	1.00
0.2	0.92
0.3	0.82
0.4	0.74
0.6	0.62
0.8	0.54
1.0	0.48
1.2	0.42
1.4	0.40
1.6	0.38
1.8	0.36
2.0	0.35
2.4	0.34
2.8	0.34

Note: $p_{a}=$ atmospheric pressure $\approx 100 \mathrm{kN} / \mathrm{m}^{2}$

Soil friction angle, $\boldsymbol{\phi}($ deg $)$	$\boldsymbol{N}_{\boldsymbol{q}}^{*}$
20	12.4
21	13.8
22	15.5
23	17.9
24	21.4
25	26.0
26	29.5
27	34.0
28	39.7
29	46.5
30	56.7
31	68.2
32	81.0
33	96.0
34	115.0
35	143.0
36	168.0
37	194.0
38	231.0
39	276.0
40	346.0
41	420.0
42	525.0
43	650.0
44	780.0
45	930.0

Hint:

$Q_{b}=\mathrm{q} N_{q} A_{b}$
$0.5 P_{\text {atm }} N_{q}(\tan \varnothing) A_{b}$
$Q_{s}=P L \alpha C_{U}$

Q4 (25\%):

Choose one or more of correct answers in between brackets:
1- The friction coefficient (f) in sand is allowed to increase to:- (5D, 10D, 15D, 20D, 25D).
2- If $\emptyset=25^{\circ}$, the lateral earth pressure coefficient $\left(k_{a}\right)$ equals to:- $(0.405,0.035,0.305,0.33$, $0.25)$.
3- The common pile cross sections are:-(square, circular, triangle, rectangle, octagonal).
4- Piles may be made of (Timber, Steel, Concrete, class, water, carton, oil).
5- The pile's tip or end should be rest on:- (rock, dense sand, soft clay, collapse soil).

Q5 (25\%):

Estimate :-
1- The resultant (R), and
2- It distance (X)from the point of rotation (O).
3- The moment (M) about the point of rotation (O).
If $x_{1}=2 m, x_{2}=6 m, D=2 m$
$\gamma_{1}=16 \frac{\mathrm{kN}}{\mathrm{m}^{3}}, \emptyset_{1}=10 C_{1}=25 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\text {sat }}=20 \mathrm{KN} / \mathrm{m}^{3}, ~ \emptyset=30^{\circ}, C_{2}=0$

A full design is required for the retaining wall
Shown in the figure, if $H=11 \mathrm{~m} \gamma_{C r}=23.5 \mathrm{kN} / \mathrm{m}^{3}, \alpha=12^{\circ}$
$x_{1}=0.3 m, x_{2}=0.7 m, x_{3}=1.7 \mathrm{~m}, x_{4}=3.8 \mathrm{~m}, x_{5}=1 \mathrm{~m}$
$\gamma_{1}=16 \cdot \frac{5 \mathrm{kN}}{\mathrm{m}^{3}}, \emptyset_{1}=32^{\circ}, \gamma_{2}=17.5=\mathrm{kN} / \mathrm{m}^{3}, D=1.75 \mathrm{~m}$

Good Luck

Examiner

Prof. Dr Najah M. L. Al Maimuri

Dr. Riyadh Abdulabas Ali Al-Sultani

Solutions

Ans1:

$$
L_{g}=3 * 0.889+2 * 0.3=3.267 m, \quad B_{g}=2 * 0.889+2 * 0.3=2.378 m
$$

$$
\frac{L_{g}}{B_{g}}=1.37, \quad \frac{L}{B_{g}}=\frac{4.57+13.72}{2.378}=7.7, \quad N_{c}=8.7
$$

Step1: Using sing pile bearing capacity:

$$
\begin{aligned}
& \sum Q_{u}=n_{1} n_{2}\left[9 A_{b} C_{u}+\sum \alpha_{1} C_{u 1} P\left(\Delta L_{1}\right)+\sum \alpha_{2} C_{u 2} P\left(\Delta L_{2}\right)\right] \\
& A_{b}=\frac{\pi * 0.3^{2}}{4}=0.07 \mathrm{~m} 2, \quad P=\pi(0.3)=0.942 \mathrm{~m}, C_{u 1}=50.3 \mathrm{KN} / \mathrm{m} 2, \alpha_{1}=0.68, \\
& C_{u 2}=\frac{85.1 \mathrm{KN}}{m 2}, \Delta L_{1}=4.57 \mathrm{~m}, \Delta L_{2}=13.72 \mathrm{~m}, \alpha_{1}=0.68
\end{aligned}
$$

From the table $\frac{0.8-8.5}{0.85-1}=\frac{0.54-\alpha_{2}}{\alpha_{2}-0.48}, \quad \alpha_{2}=0.494$
$\sum Q_{u}=3 * 4\left[9 * 0.07 * 85.1+\sum \begin{array}{c}[0.68 * 50.3 * 0.942 * 4.57 \mathrm{~m}]+(0.494 * 85.1 * 0.942 * 13.72)] \\ =643.3+147.2+543.3=8,930 K N\end{array}\right.$
Step2: Using Pile group bearing capacity

$$
\begin{aligned}
& \sum Q_{u}=L_{g} B_{g} C_{u} N_{C}^{*}+\sum 2\left(L_{g}+B_{g}\right) C_{u} \Delta L+ \\
& \sum Q_{u}=L_{g} B_{g} C_{u} N_{C}^{*}+\sum 2\left(L_{g}+B_{g}\right) C_{u_{1}} \Delta L_{1}+\sum 2\left(L_{g}+B_{g}\right) C_{u_{2}} \Delta L_{2} \\
& \sum Q_{u}=3.267 m * 2.378 m * 85.1 * 8.7+\sum 2(3.267 m+2.378 m) 50.3 * 4.57 \\
& \quad+\sum 2(3.267 m+2.378 m) 85.1 * 13.72=13,181 K N
\end{aligned}
$$

$$
\sum Q_{U}=5751.879+2,595.24+13,181.88=21,529
$$

Take the minimum $8,930 \mathrm{KN}$
Take $Q_{\text {all }}=\frac{8930}{2}=4,465 \mathrm{KN}$

Ans2:
Settlement of pile croup
$L_{g}=5 * 1 m+2 D=6 m, B_{g}=4 * 1+2 D=5 m$
Layer 1:
Settled layer $\left(\frac{L}{3}=\frac{15}{3}+=6 \mathrm{~m}\right.$
$\mathrm{H} 1=5 \mathrm{~m}$

$\mathrm{S} 1=\frac{\mathrm{C}_{\mathrm{c}} \mathrm{H}}{1+\mathrm{e}_{\mathrm{o}}} \log \frac{\sigma+\Delta \sigma}{\sigma}, \quad \mathrm{s} 1=\frac{\mathrm{C}_{\mathrm{c}} \mathrm{H}}{1+\mathrm{eo}} \log \frac{\mathrm{Po}+\delta \mathrm{p}}{\mathrm{po}}$ $\gamma_{\text {sat }}=20 \mathrm{KN} / \mathrm{m} 3 . q 4=150 \mathrm{kN} / \mathrm{m} 2$
$\sigma=2 * 17+2 * 10+8.5 * 11=147.5 \frac{\mathrm{kN}}{\mathrm{m}}^{20}$
Rock
$\Delta \sigma 1=\frac{2500}{(5+2.5)(6+2.5)}=39.2 \mathrm{KN} / \mathrm{m} 2$
$S 1=\frac{0.09 * 5}{1+0.7} \log \frac{147.5+39.2}{147.5}=0.027 \mathrm{~m}=27 \mathrm{~mm}$
Layer2
$\mathrm{H}=2 \mathrm{~m}$
$S 2=\frac{C_{c} H}{1+e_{o}} \log \frac{\sigma+\Delta \sigma}{\sigma}$,

$$
\sigma=2 * 17+2 * 10+11 * 11+1 * 9=184 \frac{k N}{m 2}
$$

$\Delta \sigma=\frac{2500}{(5+6)(6+6)}=18.9 \mathrm{KN} / \mathrm{m} 2$

$S 2=\frac{0.15 * 2}{1+0.95} \log \frac{184+18.9}{184}=0.0065 \mathrm{~m}=6.5 \mathrm{~mm}$
Layer3
$H=3 m$
$S 3=\frac{C_{c} H}{1+e_{o}} \log \frac{\sigma+\Delta \sigma}{\sigma}$,

$$
\sigma=2 * 17+2 * 10+11 * 11+2 * 9+1.5 * 10=208 \frac{k N}{m 2}
$$

$\Delta \sigma=\frac{2500}{(5+8.5)(6+8.5)}=12.77 \mathrm{KN} / \mathrm{m} 2$
$S 3=\frac{0.12 * 3}{1+0.8} \log \frac{208+12.77}{208}=0.0051 \mathrm{~m}=5.1 \mathrm{~mm}$
$S=s 1+s 2+s 3=27+6.5+5.1=38.6 \mathrm{~mm}>25$ not okay

Ans3:
$Q_{b}=\mathrm{q} N_{q} A_{b}$
$Q_{b}=(5 * 6+7 * 8) * 56.7 * \frac{\pi(0.5)^{2}}{4}=957 \mathrm{kN}$
$\leq 0.5 P_{a t m} N_{q}(\tan \varnothing) A_{b}=0.5 * 100 * 56.7 * \tan 30 * \frac{\pi(0.5)^{2}}{4}=321 \mathrm{kN}$
Take $Q_{b}=321 \mathrm{KN}$
Layer1
$Q_{s 1}=P L \alpha C_{U}$
For $C_{U}=40 \mathrm{KN} / \mathrm{m} 2, \quad \alpha=0.74, \quad L_{1}=5 m$
$Q_{s 1}=\pi(0.5) * 5 m * 0.74 * 40 K N / m 2=232 K N$ Layer2
$Q_{s}=P L f$
$L^{\prime}=15 D=15 * 0.5=7.5 \mathrm{~m}>7 \mathrm{~m}$ sand layer thickness
$f=k \sigma \tan (0.8 \varnothing)$
$f_{5 m}=1.5 *(6 * 5) \tan (0.8 * 30)=20 \mathrm{KN} / \mathrm{m} 2$

$f_{12 m}=1.5(6 * 5+7 * 8) \tan (0.8 * 30)=57.4 K N / m 2$
$K_{\text {ave }}=\frac{f_{5 m}+f_{12 \mathrm{~m}}}{2}=38.7 \mathrm{KN} / \mathrm{m} 2$
$Q_{s 2}=P L^{\prime} f_{\text {ave }}$
$Q_{s 2}=(\pi * 0.5) * 7 m * 38.7 \mathrm{KN} / \mathrm{m} 2=425.5 \mathrm{kN}$
$Q_{U}=321+232+425.5=978.5 \mathrm{KN}$

Ans4
1- 15D
2- 0.405
3- Square, Circular, Octagonal
4- Timber, Steel, Concrete
5- rock, dense sand
Ans5:
Layer1
At $\mathrm{h}=\mathbf{0}$
$P_{a}=k_{a}(\gamma h+q)-2 c \sqrt{k_{a}}$, for $\emptyset=10, k_{a}=0.7$
$P_{a}=0.7 *(16 * 0+100)-2 * 25 \sqrt{0.7}=28 K N / m 2$
At $\mathrm{h}=2 \mathrm{~m}$

$$
P_{a}=k_{a}(\gamma h+q)-2 c \sqrt{k_{a}}=0.7(16 * 2+100)-2 * 25 \sqrt{0.7}=50 \mathrm{KN} / \mathrm{m} 2
$$

Layer2
At $\mathrm{h}=\mathbf{2 m}$

$$
P_{a}=k_{a}(\gamma h+q)=0.33 *(16 * 2+100)=43.5 \mathrm{KN} / \mathrm{m} 2
$$

At $\mathrm{h}=10$

$$
P_{a}=0.33 * 10 * 10=33 \mathrm{KN} / \mathrm{m} 2
$$

$R=56+22+348+452-80=798 K N$
$798 X=56 * 9+22 * 8.66+348 * 5+452 * 2.66-80 * 0.66$
$X=4.491 m$

$$
M=798 * 4.491=3,584 K N . m, C o u n t e r c l o c k w i s e
$$

Ans6:

Factor of safety against overturning moment

Force,	KN/m	Distance (d), m	$M_{R}, K N . m$	M_{O}, KN.m	FS
W1	19.76	4.93	97.4168		
W2	689.7	4.3	2965.71		
W3	77.55	2.25	174.4875		

W4	51.7	1.96	101.332		
W5	145.7	3.1	451.67		
W7	19.6	0.85	16.66		
Pv	71.5	3.8	271.7		
Ph	337	3.93		1,324	
Pp	181.8	0.583	106		
$\sum \boldsymbol{F}_{\boldsymbol{V}}$	1075.5		$\sum 4185$	$\sum 1324$	3.1

Factor of safety against sliding
$F_{R}=\sum V \tan (k 1 \varnothing)+C B+P_{p}, \quad \sum V=1,095 \mathrm{KN} / \mathrm{m}$
$F_{R}=1075 \tan (0.5 * 28)+6.2 * 30+181.8=635.8 K N / m$
$F S=\frac{F_{R}}{P_{h}}=\frac{635.8}{337}=1.9<2.5$ the retaining wall need some proportioning

Factor of safety for beneath Soil

1. Eccentricity analysis
$R X=\sum M_{o}$

$1075.5 R=4185-1324, X=2.66 m, e=\frac{B}{2}-X=0.44$
$<\frac{B}{6}=\frac{6.2}{6}=1.033 \mathrm{~m}$ OK no negative soil reaction
$q=\frac{\sum V}{B} \mp \frac{6 M}{B^{2}}=\frac{1075.5}{6.2} \mp \frac{6 * 473}{(6.2)^{2}}=173.4 \mp 73.8$
$q_{A}=100 K N / m 2, \quad q_{o}=247 K N / m 2$

2. B.C of Sub soil

$$
q=C N_{C}+q N_{q}
$$

