Q1 (25%):

Determine the allowable bearing capacity of the pile group (Q_{all}), shown In the figure if, D=0.3m, Fs=2 $X_1=4.57m$, $X_2=17.72m$, $C_{U1}=50.3$ kN/m^2 , $\gamma_{sat}1=17.6kN/m^3$, $C_{U2}=85.1kN/m^2$, $\gamma_{sat}=19.02$ kN/m^3 The distance between piles C-C , d=0.889m

Table 11.10 Variation of α (interpolated values based on Terzaghi, Peck and Mesri, 1996)

c_u		
p_a	α	
≤ 0.1	1.00	
0.2	0.92	
0.3	0.82	
0.4	0.74	
0.6	0.62	
0.8	0.54	
1.0	0.48	
1.2	0.42	
1.4	0.40	
1.6	0.38	
1.8	0.36	
2.0	0.35	
2.4	0.34	
2.8	0.34	

Note: p_a = atmospheric pressure $\approx 100 \text{ kN/m}^2$

Hint:

$$\sum Q_u = n_1 n_2 [9A_b C_u + \sum \alpha C_u P(\Delta L)]$$

$$\sum Q_u = L_g B_g C_u N_C^* + \sum 2(L_g + B_g) C_u \Delta L$$

O2 (25%):

Compute the consolidation settlement of the pile group shown in the figure if, $\gamma_1=16kN/m^3$, $\gamma_{sat1}=20kN/m^3$ $\gamma_{sat2}=21kN/m^3$, $q_{u2}=100kN/m^2$, $e_{o2}=0.7$, $C_{C2}=0.13$, $\gamma_{sat3}=19kN/m^3$, $q_{u3}=110kN/m^2$, $e_{o3}=0.95$, $C_{C3}=0.15$, $\gamma_{sat4}=20kN/m^3$, $q_{u4}=150kN/m^2$, $e_{o4}=0.8$, $C_{C4}=0.12$. The distance is measured from ground Surface to interface of each layer $h_1=2m$, $h_2=4m$, $h_3=15m$, $h_4=17m$ $h_5=20m$ and the diameter of each pile is D=0.5m, and $Q_U=2500\,kN$

Hint: use

$$S_f = \frac{C_c}{1 + e_o} H_o \log_{10} \left(\frac{\sigma'_o + \Delta \sigma'}{\sigma'_o} \right)$$

Q3 (25%):

Estimate the ultimate bearing capacity of the pile shown in the figure, if it penetrated a clay layer of thickness $L_1=5m$ and continued in deep sandy layer to a depth of $L_2=7m$. The diameter of the pile D=0.5m, $C_u=40kN/m^3$, $\gamma_1=16~KN/m^3$, $\gamma_2=18~KN/m^3$, $\phi=30^\circ$, k = 1.5

Table 11.10 Variation of α (interpolated values based on Terzaghi, Peck and Mesri, 1996)

c_u	
p_a	α
≤ 0.1	1.00
0.2	0.92
0.3	0.82
0.4	0.74
0.6	0.62
0.8	0.54
1.0	0.48
1.2	0.42
1.4	0.40
1.6	0.38
1.8	0.36
2.0	0.35
2.4	0.34
2.8	0.34

Note: p_a = atmospheric pressure $\approx 100 \text{ kN/m}^2$

Soil friction angle, ϕ (deg)	N_q^*	
20	12.4	
21	13.8	
22	15.5	
23	17.9	
24	21.4	
25	26.0	
26	29.5	
27	34.0	
28	39.7	
29	46.5	
30	56.7	
31	68.2	
32	81.0	
33	96.0	
34	115.0	
35	143.0	
36	168.0	
37	194.0	
38	231.0	
39	276.0	
40	346.0	
41	420.0	
42	525.0	
43	650.0	
44	780.0	
45	930.0	

Hint:

$$Q_b = qN_qA_b$$

$$0.5 P_{atm} N_q(tan\emptyset) A_b$$

$$Q_s = PL\alpha C_U$$

Q4 (25%):

Choose one or more of correct answers in between brackets:

- 1- The friction coefficient (f) in sand is allowed to increase to:- (5D, 10D, 15D, 20D, 25D).
- 2- If $\emptyset = 25^{\circ}$, the lateral earth pressure coefficient (k_a) equals to:- (0.405, 0.305, 0.305, 0.33, 0.25).
- 3- The common pile cross sections are:-(square, circular, triangle, rectangle, octagonal).
- 4- Piles may be made of (Timber, Steel, Concrete, class, water, carton, oil).
- 5- The pile's tip or end should be rest on:- (rock, dense sand, soft clay, collapse soil).

Q5 (25%):

Estimate:-

- 1- The resultant (R), and
- 2- It distance (X) from the point of rotation (O).
- 3- The moment (M) about the point of rotation (O).

If
$$x_1 = 2m$$
, $x_2 = 6m$, $D = 2m$
 $\gamma_1 = 16 \frac{kN}{m^3}$, $\emptyset_1 = 10$ $C_1 = 25 kN/m^3$
 $\gamma_{sat} = 20 KN/m^3$, $\emptyset = 30^{\circ}$, $C_2 = 0$

Q6 (25%):

A full design is required for the retaining wall

Shown in the figure, if H=11m $\gamma_{Cr}=23.5$ kN/m^3 , $\alpha=12^\circ$ $x_1=0.3m$, $x_2=0.7m$, $x_3=1.7m$, $x_4=3.8m$, $x_5=1m$ $\gamma_1=16.\frac{5kN}{m^3}$, $\emptyset_1=32^\circ$, $\gamma_2=17.5=kN/m^3$, D=1.75m

Good Luck

Examiner

Prof. Dr Najah M. L. Al Maimuri

Head of Department

Dr. Riyadh Abdulabas Ali Al-Sultani

Solutions

Ans1:

$$L_g = 3*0.889 + 2*0.3 = 3.267m\;,\;\; B_g = 2*0.889 + 2*0.3 = 2.378m$$

$$\frac{L_g}{B_g} = 1.37$$
, $\frac{L}{B_g} = \frac{4.57 + 13.72}{2.378} = 7.7$, $N_c = 8.7$

Step1: Using sing pile bearing capacity:

$$\sum Q_u = n_1 n_2 [9A_bC_u + \sum \alpha_1 C_{u1}P(\Delta L_1) + \sum \alpha_2 C_{u2}P(\Delta L_2)]$$

$$A_b = \frac{\pi * 0.3^2}{4} = 0.07m2$$
, $P = \pi(0.3) = 0.942m$, $C_{u1} = 50.3KN/m2$, $\alpha_1 = 0.68$,

$$C_{u2} = \frac{85.1KN}{m^2}$$
, $\Delta L_1 = 4.57m$, $\Delta L_2 = 13.72m$, $\alpha_1 = 0.68$

From the table
$$\frac{0.8-8.5}{0.85-1} = \frac{0.54-\alpha_2}{\alpha_2-0.48}$$
, $\alpha_2 = 0.494$

$$\sum Q_u = 3*4[9*0.07*85.1 + \sum \frac{[0.68*50.3*0.942*4.57m] + (0.494*85.1*0.942*13.72)]}{643.3 + 147.2 + 543.3 = 8,930KN}$$

Step2: Using Pile group bearing capacity

$$\sum Q_u = L_g B_g C_u N_C^* + \sum 2(L_g + B_g) C_u \Delta L +$$

$$\sum Q_{u} = L_{g}B_{g}C_{u}N_{c}^{*} + \sum 2(L_{g} + B_{g})C_{u_{1}}\Delta L_{1} + \sum 2(L_{g} + B_{g})C_{u_{2}}\Delta L_{2}$$

$$\sum Q_u = 3.267m * 2.378m * 85.1 * 8.7 + \sum 2(3.267m + 2.378m)50.3 * 4.57 + \sum 2(3.267m + 2.378m)85.1 * 13.72 = 13,181KN$$

$$\sum_{U} Q_{U} = 5751.879 + 2,595.24 + 13,181.88 = 21,529$$

Take the minimum 8,930*KN*

Take
$$Q_{all} = \frac{8930}{2} = 4,465KN$$

Ans2:

Settlement of pile croup

$$L_g = 5*1m + 2D = 6m, B_g = 4*1 + 2D = 5m \ \mathrm{4m}$$

Layer 1:

Settled layer
$$(\frac{L}{3} = \frac{15}{3} + = 6m)$$

$$H1 = 5m$$

$$S1 = \frac{C_c H}{1 + e_o} \log \frac{\sigma + \Delta \sigma}{\sigma}$$
, $S1 = \frac{C_c H}{1 + e_o} \log \frac{Po + \delta p}{po}$

$$\sigma = 2 * 17 + 2 * 10 + 8.5 * 11 = 147.5 \frac{kN}{m2}$$

$$\Delta \sigma 1 = \frac{2500}{(5+2.5)(6+2.5)} = 39.2KN/m2$$

$$S1 = \frac{0.09*5}{1+0.7} \log \frac{147.5+39.2}{147.5} = 0.027m = 27mm$$

Layer2

H=2m

$$S2 = \frac{C_c H}{1 + e_o} log \frac{\sigma + \Delta \sigma}{\sigma},$$

$$\sigma = 2 * 17 + 2 * 10 + 11 * 11 + 1 * 9 = 184 \frac{kN}{m^2}$$

$$\Delta \sigma = \frac{2500}{(5+6)(6+6)} = 18.9 KN/m^2$$

$$S2 = \frac{0.15*2}{1+0.95} \log \frac{184+18.9}{184} = 0.0065m = 6.5mm$$

Layer3

H=3m

$$S3 = \frac{c_c H}{1 + e_o} \log \frac{\sigma + \Delta \sigma}{\sigma},$$

$$\sigma = 2 * 17 + 2 * 10 + 11 * 11 + 2 * 9 + 1.5 * 10 = 208 \frac{kN}{m^2}$$

$$\Delta \sigma = \frac{2500}{(5+8.5)(6+8.5)} = 12.77KN/m2$$

$$S3 = \frac{0.12*3}{1+0.8} log \frac{208+12.77}{208} = 0.0051m = 5.1mm$$

$$S = s1 + s2 + s3 = 27 + 6.5 + 5.1 = 38.6mm > 25 \text{ not okay}$$

Ans3:

$$Q_b = qN_qA_b$$

$$Q_b = (5*6+7*8)*56.7*\frac{\pi(0.5)^2}{4} = 957 \text{ kN}$$

$$\leq 0.5 \, P_{atm} N_q(tan\emptyset) A_b = 0.5 * 100 * 56.7 * tan30 * \frac{\pi (0.5)^2}{4} = 321 \, kN$$

Take
$$Q_b = 321KN$$

Layer1

$$Q_{s1} = PL\alpha C_{II}$$

For
$$C_U = 40KN/m2$$
, $\alpha = 0.74$, $L_1 = 5m$

$$Q_{s1} = \pi(0.5) * 5m * 0.74 * 40KN/m2 = 232KN$$

Layer2

$$Q_s = PLf$$

$$\dot{L} = 15D = 15 * 0.5 = 7.5m > 7$$
m sand layer thickness

$$f = k\sigma \tan(0.8\emptyset)$$

$$f_{5m} = 1.5 * (6 * 5) \tan(0.8 * 30) = 20KN/m2$$

$$f_{12m} = 1.5(6 * 5 + 7 * 8) \tan(0.8 * 30) = 57.4KN/m2$$

$$K_{ave} = \frac{f_{5m} + f_{12m}}{2} = 38.7KN/m2$$

$$Q_{s2} = PLf_{ave}$$

$$Q_{s2} = (\pi * 0.5) * 7m * 38.7KN/m2 = 425.5 kN$$

$$Q_U = 321 + 232 + 425.5 = 978.5 \, KN$$

Ans4

- 1- 15D
- 2- 0.405
- 3- Square, Circular, Octagonal
- 4- Timber, Steel, Concrete
- 5- rock, dense sand

Ans5:

Layer1

At
$$h = 0$$

$$P_a = k_a (\gamma h + q) - 2c \sqrt{k_a}$$
 , for $\emptyset = 10$, $k_a = 0.7$

$$P_a = 0.7 * (16 * 0 + 100) - 2 * 25\sqrt{0.7} = 28KN/m2$$

At h = 2 m

$$P_a = k_a(\gamma h + q) - 2c\sqrt{k_a} = 0.7(16 * 2 + 100) - 2 * 25\sqrt{0.7} = 50KN/m2$$

Layer2

At h = 2m

$$P_a = k_a(\gamma h + q) = 0.33 * (16 * 2 + 100) = 43.5KN/m2$$

At h = 10

$$P_a = 0.33 * 10 * 10 = 33$$
KN/m2

$$R = 56 + 22 + 348 + 452 - 80 = 798KN$$

$$798X = 56 * 9 + 22 * 8.66 + 348 * 5 + 452 * 2.66 - 80 * 0.66$$

X = 4.491m

M = 798 * 4.491 = 3,584 KN.m, Counterclockwise

Ans6:

$$AB = 11 + 3.8 \tan(12) = 11.8m$$

$$P_a = \frac{k_a \gamma h^2}{2} = \frac{0.3*16.5*11.8^2}{2} = 344KN/m, P_h = 344\cos(12) = 337KN/m,$$

$$P_V = 344 sin 12 = 71.5 KN/m, \ W1 = 3.8 * 0.8 * 16.5 = 19.76 KN/m,$$

$$W2 = 3.8 * 11 * 16.5 = 689.7KN/m$$
, $W3 = 0.3 * 11 * 23.5 = 77.55KN/m$,

$$W4 = \frac{0.4*11}{2} * 23.5 = 51.7KN/m, W5 = 6.2 * 1 * 23.5 = 145.7KN/m$$

$$F_p = \frac{k_p \gamma D^2}{2} + 2DC\sqrt{kp} = \frac{3*16.5*1.75^2}{2} + 2*1.75*30\sqrt{3} = 181.8KN/m, \ W7 = 0.7*1.7*16.5 = 19.6KN/m$$

$$d1 = 4.93m$$
, $d2 = 4.3m$, $d3 = 2.25m$, $d4 = 1.96m$, $d5 = 3.1m$, $d7 = 0.85m$, $d_h = 3.93m$, $d_V = 3.8m$.

Factor of safety against overturning moment

Force,	KN/m	Distance (d), m	M_R , KN . m	M_O , KN.m	FS
W1	19.76	4.93	97.4168		
W2	689.7	4.3	2965.71		
W3	77.55	2.25	174.4875		

W4	51.7	1.96	101.332		
W5	145.7	3.1	451.67		
W7	19.6	0.85	16.66		
Pv	71.5	3.8	271.7		
Ph	<mark>337</mark>	3.93		1,324	
Рр	181.8	0.583	106		
$\sum F_V$	1075.5		$\sum 4185$	$\sum 1324$	3.1

247KN/m

Factor of safety against sliding

$$F_R = \sum V tan(k1\emptyset) + CB + P_p$$
,

$$\sum V = 1,095 \, KN/m$$

$$F_R = 1075 \tan(0.5 * 28) + 6.2 * 30 + 181.8 = 635.8 KN/m$$

$$FS = \frac{F_R}{P_h} = \frac{635.8}{337} = 1.9 < 2.5$$
 the retaining wall need some proportioning

Factor of safety for beneath Soil

1. Eccentricity analysis

$$RX = \sum M_o$$

$$1075.5R = 4185 - 1324$$
, $X = 2.66m$, $e = \frac{B}{2} - X = 0.44$

 $<\frac{B}{6} = \frac{6.2}{6} = 1.033 m$ OK no negative soil reaction

$$q = \frac{\sum V}{B} \mp \frac{6M}{B^2} = \frac{1075.5}{6.2} \mp \frac{6*473}{(6.2)^2} = 173.4 \mp 73.8$$

$$q_A = 100KN/m2$$
, $q_o = 247KN/m2$

2. B.C of Sub soil

$$q = CN_C + qN_q$$