Flip-Flop Types, Conversion and Applications

The flip-flops are basically the circuits that maintain a certain state unless and until directed by the input for changing that state. We can construct a basic flip-flop using four-NOR and four-NAND gates.

In this section, we will take a look at the Flip-Flops and their Types according to the GATE Syllabus for CSE (Computer Science Engineering). Read ahead to learn more.

Table of Contents

- What are Flip-Flops
- <u>Types of Flip-Flops</u>
 - <u>S-R Flip Flop</u>
 - J-K Flip Flop
 - <u>D Flip Flop</u>
 - <u>T Flip Flop</u>
- <u>Conversion for Flip-Flops</u>
 - EXCITATION TABLE
- <u>Converting Flip-Flops</u>
 - Conversion of SR to JK Flip-Flop
 - Excitation Functions
 - Conversion of SR to D FlipFlop
 - Excitation Functions
- Applications of Flip-Flops
- <u>Practice Questions on Sequential Circuits</u>

What are Flip-Flops?

The flip-flops are basically the circuits that maintain a certain state unless and until directed by the input for changing that state. We can construct a basic flip-flop using four-NOR and four-NAND gates.

Types of Flip-Flops

The flip-flops are of the following types:

- 1. S-R Flip Flop
- 2. J-K Flip Flop
- 3. T Flip Flop
- 4. D Flip Flop

Next page, you can find the logic diagrams along with the truth tables of all the various types of flip-flops:

S-R Flip Flop

Truth Table

S	R	Q _N	Q _{N + 1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	-