FIRST YEAR

2.2. Rectangular Components: Two Dimensions

Vectors F_x and F_y are rectangular components of F.

The resultant force is determined from the algebraic sum of its components.

$$(F_R)_x = \sum F_x$$

$$(F_R)_y = \sum F_y$$

$$F_R = \sqrt{(F_R)_x^2 + (F_R)_y^2}$$

$$\theta = \tan^{-1} \left| \frac{(F_R)_y}{(F_R)_x} \right|$$

FIRST YEAR

Example: The end of the boom O in Figure (a) below is subjected to three concurrent and coplanar forces. Determine the *magnitude* and *direction* of the resultant force.

Solution:

Each force is resolved into its x and y components, Figure (b), Summing the x-components and y-components:

$$\stackrel{+}{\to} (F_R)_x = \Sigma F_x; \qquad (F_R)_x = -400 \text{ N} + 250 \sin 45^\circ \text{ N} - 200 \left(\frac{4}{5}\right) \text{ N} \\
= -383.2 \text{ N} = 383.2 \text{ N} \leftarrow$$

$$+\uparrow (F_R)_y = \Sigma F_y;$$
 $(F_R)_y = 250 \cos 45^{\circ} \text{ N} + 200(\frac{3}{5}) \text{ N}$
= 296.8 N \uparrow

The resultant force, shown in Figure c, has a magnitude of:

$$F_R = \sqrt{(-383.2 \text{ N})^2 + (296.8 \text{ N})^2}$$

= 485 N

The direction angle θ is:

$$\theta = \tan^{-1} \left(\frac{296.8}{383.2} \right) = 37.8^{\circ}$$

FIRST YEAR

HW: Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

FIRST YEAR

2.3. Rectangular Components: Three Dimensions

The magnitude of F is determined from the positive square root of the sum of the squares of its components.

$$F = \sqrt{{F_x}^2 + {F_y}^2 + {F_z}^2}$$

To determine α , β , and γ :

$$\cos \alpha = \frac{F_x}{F}$$
, $\cos \beta = \frac{F_y}{F}$, $\cos \gamma = \frac{F_z}{F}$

If only *two* of the coordinate angles are known, the third angle can be found using this equation:

$$\cos \alpha + \cos \beta + \cos \gamma = 1$$

FIRST YEAR

Example: Two forces act on the hook shown in Fig. below. Specify the magnitude of F_2 and its coordinate direction angles so that the resultant force F_R acts along the positive y-axis and has a magnitude of 800 N.

15

Solution:

 $\sum Fx = 0$ (Because F_R acts along the y-axis)

$$0 = 300 \cos 45^0 + F_{2x}$$

$$F_{2x} = -212.1 \text{ N}$$

 $\sum Fy = 800 N$ (Because F_R acts along the y-axis)

$$800 = 300 \cos 60^0 + F_{2y}$$

$$F_{2y} = 650 \text{ N}$$

 $\sum Fz = 0$ (Because F_R acts along the y-axis)

$$0 = 300 \cos 120^0 + F_{2z}$$

$$0 = -150 + F_{2z}$$

$$F_{2z} = -150 \text{ N}$$

$$F_2 = \sqrt{F_{2x}^2 + F_{2y}^2 + F_{2z}^2}$$

$$F_2 = \sqrt{(-212.1)^2 + (650)^2 + (150)^2}$$

$$F_2 = 700 \, N$$

$$\cos \alpha_2 = \frac{F_{2x}}{F} = \frac{-212.1}{700};$$
 $\alpha_2 = 108^0$

$$\cos \beta_2 = \frac{F_{2y}}{F} = \frac{650}{700};$$
 $\beta_2 = 21.8^0$

$$\cos \gamma_2 = \frac{F_{2z}}{F} = \frac{150}{700};$$
 $\gamma_2 = 77.6^0$

FIRST YEAR

HW: Determine the magnitude and coordinate direction angles of the resultant force and sketch this vector on the coordinate system.

Solution:

$$F_{1x} = 80 \cos 30 \cos 40 = 53.1$$
 Ib $= F_x$

$$F_{1y} = 80 \cos 30 \sin 40 = (-) 44.5^{\text{ lb}} = F_y$$

$$F_{1z} = 80 \sin 30 = 40^{\text{ lb}}$$

$$F_z = 40 - 130 = -90$$
 lb

$$F_R = \sqrt{53.1^2 + 44.5^2 + (-90)^2} = 113.6^{\text{lb}}$$

$$\cos \alpha = \frac{F_x}{F_R} = \frac{53.1}{113.6};$$
 $\alpha = 62.1^0$

$$\cos \beta = \frac{F_y}{F_R} = \frac{-44.5}{113.6};$$
 $\beta = 113^0$

$$\cos \gamma = \frac{F_z}{F_R} = \frac{-90}{113.6}; \qquad \gamma = 142^0$$

